
LOCAL LANGLANDS SEMINAR: BASICS OF WEIL-DELIGNE REPRESENTATIONS

KENTA SUZUKI

Abstract. We will cover the basic definitions involved in the statement for the Local Langlands
Correspondence for GLn in characteristic zero.

Fix a prime number p, a finite extension F/Qp, and an algebraic closure F of F throughout the
talk.

1. Smooth representations of GLn(F )

Let C be an algebraically closed field of characteristic zero.
First of all, topologize the group GLn(F ) by making it inherit the product topology from

Mn(F ) = Fn2
. We will define a smooth representation of GLn(F ) over C:

Proposition-Definition 1. Let (V, π) be a representation of GLn(F ) over C, i.e., V is a C-vector
space and π : GLn(F ) → GL(V ) is a group homomorphism. The representation (V, π) is smooth if
one of the following equivalent conditions hold:

(i) For any compact open subgroup K ⊂ GLn(F ), let V
K := {v ∈ V : π(K)v = v}. Then

V =
⋃
K

V K .

(ii) For any vector v ∈ V there is a compact open subgroup K ⊂ GLn(F ) such that π(K)v = v.
(iii) For any vector v ∈ V the stabilizer of v

Stab(v) := {g ∈ GLn(F ) : π(g)v = v}

is open in GLn(F ).
(iv) The action map GLn(F )× V → V is continuous, where V is given the discrete topology.

Proof. The equivalence of (i) and (ii) is clear. (ii) clearly implies (iii). Moreover (iii) implies
(ii) since GLn(F ) is a locally compact group (i.e., has an open basis consisting of compact open
subgroups). Now note that (iv) is equivalent to: for any v, w ∈ V ,

(GLn(F )× {v}) ∩ a−1(w) = {g ∈ GLn(F ) : π(g)v = w}

is open in GLn(F ). Thus (iv) implies (iii) by letting v = w. Conversely, clearly the set (GLn(F )×
{v}) ∩ a−1(w) is open if it is empty. If it is non-empty, say it contains g0 ∈ GLn(F ), then

(GLn(F )× {v}) ∩ a−1(w) = g0 Stab(v)

is open in GLn(F ). □

Definition 1.0.1. A smooth representation (V, π) of GLn(F ) is admissible if for any compact open
subgroup K ⊂ GLn(F ) the subspace V K ⊂ V is finite-dimensional.
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2. Weil-Deligne representation

Definition 2.0.1. Let WF be the Weil group of F . A Weil-Deligne representation of WF on
a finite-dimensional L-vector space V is a pair (r,N) where r : WF → GL(V ) is a continuous
semisimple representation, and N : V → V is an endomorphism, such that for all σ ∈WF ,

r(σ)Nr(σ)−1 = q
−vF (σ)
F N.

A Weil-Deligne representation is bounded if for all σ ∈ WF the operator r(σ) is bounded, i.e.,
the determinant is in o×L and the characteristic polynomial is in oL[X] (equivalently, all of the

eigenvalues are in o×
L
).

2.1. Grothendieck’s monodromy theorem. Let ℓ ̸= p be two primes. We will consider ℓ-adic
representations of GF , i.e., a representation into a finite-dimensional L-vector space, where L/Qℓ

is algebraic.
Now recall Grothendieck’s monodromy theorem ([Gee22, Prop 2.18], [BH06, Thm 32.5], [ST68]):

Proposition 2.1.1. Suppose ℓ ̸= p, let F/Qℓ be a finite extension, let L/Qp be an algebraic
extension, and let V be a finite-dimensional L-vector space. Fix:

• φ, a lift of FrF ; and
• a compatible system (ζm)(m,ℓ)=1 of primitive roots of unity.

Then for any continuous representation ρ : GF → GL(V ) there is a finite extension F ′/F and a
uniquely determined nilpotent endomorphism N : V → V such that for all σ ∈ IF ′,

ρ(σ) = exp(Ntζ,p(σ)),

where for all σ ∈ WF , we have ρ(σ)Nρ(σ)−1 = q
−vF (σ)
F N , where tζ is an isomorphism IF /PF ≃∏

p ̸=ℓ Zp.
Moreover, there is an equivalence of categories:{

continuous representations of GF on
finite-dimensional L-vector spaces

}
≃

{
bounded Weil-Deligne representations
on finite dimensional L-vector spaces

}
ρ 7→ (V, r,N),

where r(τ) := ρ(τ) exp(−tζ,p(φ−vF (τ)τ)N).

Then the Local Langlands Correspondence for GLn, proved by [HT01], [Hen00], and [Sch13] is a
bijection:1

(2.1.2)

IrrGLn(F ) :=

{
irreducible smooth represen-
tations of GLn(F ) over C

}
≃ Φn(WF ) :=

{n-dimensional representations ρ of
WDF such that ρ|WF

is semisimple
and ρ|C is algebraic

}

satisfying compatibility with parabolic induction, central characters, etc. Denote the correspon-
dence as π 7→ ρπ.

Example 2.1.3. Consider the vector space V of smooth functions on P1
F . Then since GL2(F ) acts

on P1
F , it becomes a smooth representation of GL2(F ). It has a subspace 1 consisting of constant

functions, and the quotient V/1 is irreducible, called the Steinberg representation. The L-parameter

1For a proof when n = 2, see [BH06].
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is given by:

WF ⋊C → GL2(C)

(w, 0) 7→
(
∥w∥1/2

∥w∥−1/2

)
(1, x) 7→

(
1 x

1

)
.

The Local Langlands Correspondence translates properties of representations of GLn(F ) to prop-
erties of representations of WDF in the following way [Bor79]:

Definition 2.1.4. Let π be a smooth irreducible representation of GLn(F ). Then

(1) π is tempered if the central character ωπ is unitary, and for any matrix coefficient f of π
and any ϵ > 0, ∫

GLn(F )/F×
|f(g)|2+ϵdg <∞.

(2) π is square-integrable if the central character ωπ is unitary, and for any matrix coefficient
f of π, ∫

GLn(F )/F×
|f(g)|2dg <∞.

π is essentially square-integrable or discrete series if there exists a character χ of F× such
that π ⊗ χ is square-integrable.

(3) π is supercuspidal if all matrix coefficients of π have compact support modulo F×.

Remark 2.1.5. Supercuspidal implies square-integrable implies tempered.

Proposition 2.1.6. Let π be a smooth irreducible representation of GLn(F ), and let ρπ : WDF →
GLn(C) be its Langlands parameter. Then the following hold:

(1) π is tempered if and only if the image of ρπ|WF
is bounded

(2) π is square-integrable modulo center if and only if ρπ is indecomposable
(3) π is supercuspidal if and only if ρπ|WF

is irreducible.

2.2. Satake correspondence. For unramified representations of GLn(F ), the correspondence is
particularly simple:

Definition 2.2.1. An irreducible smooth representation π of GLn(F ) is unramified if π has a
GLn(o)-invariant vector.

The Satake correspondence is a bijection between subsets of IrrGLn(F ) and Φn(WF ), compatible
with the Local Langlands Correspondence (and much easier!):

(2.2.2)

{
unramified representations of
GLn(F ) over C

}
≃ Sn\(C×)n.

Here, (z1, . . . , zn) ∈ Sn\(C×)n is viewed as a n-dimensional representations of WDF by

WDF → GLn(C)

(w, x) 7→ diag(z
valF (w)
1 , . . . , zvalF (w)

n ).

Thus, (2.2.2) can be re-written to resemble the general Local Langlands Correspondence:

(2.2.3)

{
unramified representations of
GLn(F ) over C

}
≃

{
representations of WDF triv-
ial on C and the inertia IF

}
.

Given a n-tuple (z1, . . . , zn) ∈ Sn\(C×)n, let

Bn = {(xij)ni,j=1 ∈ GLn(F ) : xij = 0 for i > j}
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be the Borel subgroup of GLn(F ), the subgroup of upper triangular n×n-matrices. Then (z1, . . . , zn)
defines a character χ : Bn → C× by:

χ(xij)
n
i,j=1 := z

valF (x11)
1 · · · zvalF (xnn)

n ,

where valF : F× → Z is the valuation. Then the normalized parabolic induction of χ, denoted
iGBχ, is such that (iGBχ)

GLn(oF ) is 1-dimensional, hence has a unique unramified subquotient. The
subquotient is moreover independent of the order of the zi’s, hence realizes the map from the right
to left in (2.2.2). To go from the left to the right, we take eigenvalues of certain Hecke operators
on the representation, and we denote the correspondence by πv 7→ tπv .

3. L-factors and ϵ-factors

Definition 3.0.1. Let (ρ, V ) be a finite-dimensional semisimple representation of WF . Then let

L(ρ, s) := det(1− ρ(Fr)q−s;V IF )−1.

To define the local constant, we must discuss the functional equation for the group GL1(F ) = F×:
The local constant (ϵ-factor) is more convoluted. For Φ ∈ C∞

c (F ), define the Fourier transform

Φ̂ of Φ to be:

Φ̂(x) =

∫
F
Φ(y)ψ(xy)dµ(y).

Now set

zm :=

∫
ϖmo×F

Φ(x)χ(x)dµ×(x)

and let

ζ(Φ, χ, s) :=
∑
m∈Z

zmq
−ms

Then there is a unique rational function γ(χ, s, ψ) ∈ C(q−s) such that

ζ(Φ̂, χ−1, 1− s) = γ(χ, s, ψ)ζ(Φ, χ, s).

Now let

ϵ(χ, s, ψ) := γ(χ, s, ψ)
L(χ, s)

L(χ−1, 1− s)
.

Fix a non-trivial continuous character ψ : F → C×, and for any finite extension E/F let ψE =
ψ ◦ trE/F .

Theorem 3.0.2. There is a unique family of ϵ(ρ, s, ψE) ∈ C[q±s]× = C×(qs)Z for all finite exten-
sions E/F inside F and semisimple representation ρ of WE such that:

(1) If χ is a character of E× then

ϵ(χ ◦ArtE , s, ψE) = ϵ(χ, s, ψE),

where ArtE : W ab
E → E× is the Artin reciprocity map

(2) If ρ1 and ρ2 are semisimple then

ϵ(ρ1 ⊕ ρ2, s, ψE) = ϵ(ρ1, s, ψE)ϵ(ρ2, s, ψE).
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