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Abstract

The spin representation (C?)®" can be decomposed uniquely into irreducible modules called
the Specht Modules, denoted W;'. Lusztig’s dual canonical basis of the spin representation
can be viewed as diagrams of the Temperley-Lieb algebra, and the Specht Modules also have a
diagrammatic basis. We explicitly describe the decomposition of the spin representation into
Specht Modules, (C*)P" =~ W& ---@& W ,,, by computing the images of the diagrammatic
basis elements of the Specht Modules. We do this by using induction to compute the image of
W and reducing the problem of computing the images of other Specht modules to this case.
Our results may lead to the notion of a canonical basis for Specht Modules in the future.

Summary

In both mathematics and physics, a common method of understanding complicated systems
is to break them down into smaller pieces. Accordingly, it is known that a multiple-electron
system can be viewed as multiple single-particle systems, but mathematicians and physicists
do not yet know which single-particle systems a multiple-electron system explicitly breaks
into. This paper investigates the question of computing such a decomposition explicitly.
To do so, we investigate both the multiple-electron and single-particle systems mathemati-
cally and visually. We view multiple-electron systems using a mathematical object called the
Temperley-Lieb algebra, an object defined in terms of diagrams with applications in statis-
tical mechanics, representation theory, and topology. Similarly, we view the single-particle
systems through certain diagrams of mathematical objects called Specht Modules. We com-
pute how the Temperley-Lieb algebra explicitly relates to the Specht Modules through how
the diagrams of both objects explicitly relate to each other. This, in turn, allows us to com-
pute how a certain system with multiple electrons decomposes into systems with only one
particle, simplifying computations in quantum mechanics.



1 Introduction

®" is an important object in various areas of mathematics

The spin representation (C?)
and physics. Since it was first introduced by Cartan in 1913 [I] and applied to physics
by Dirac in 1928 [2], mathematicians and physicists have studied it extensively. The spin
representation parametrizes configurations of n electrons, each of which has spin-up or spin-
down. We focus on (C?)P", which parametrizes configurations with % spin-down electrons
and n — k spin-up electrons.

If one considers the spin representation (C?)®" as a representation of a quantum group,
the algebra of endomorphisms that commute with the action of a quantum group is precisely
TL,, the Temperley-Lieb algebra on n vertices. First introduced by Temperley and Lieb in
1971 [3], the Temperley-Lieb algebra has applications in statistical mechanics, representation
theory, and topology. As a vector space, the Temperley-Lieb algebra is generated by diagrams
consisting of two parallel lines with n vertices on each line, where each vertex is connected

to exactly one other vertex and no lines intersect (see Flgure 1
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Figure 1: Examples of diagrams in the Temperley-Lieb algebra.

The spin representation with & spin-down electrons, (C?)£", decomposes uniquely into
irreducible modules named Specht modules, which are a generalization of the irreducible
representations of S, introduced by Specht in 1935 [4]. One method often used to understand
algebraic structures, such as modules, is to find a diagrammatic interpretation that allows
mathematicians to visualize the object combinatorially. Martin [5] discovered a diagrammatic
basis for the Specht modules: the Specht module W}* for k = n (mod 2) can be expressed
as a vector space spanned by certain diagrams from n vertices to k vertices.

Similarly, Khovanov [6] first introduced the possibility that the spin representation may
have a diagrammatic interpretation. The author [7] generalized his work, allowing one to view
the spin representation, specifically Lusztig’s canonical basis [§], in terms of the diagrams of
the Temperley-Lieb algebra.

This paper investigates the natural question of how to explicitly compute the decompo-

sition of the spin representation into Specht modules in terms of the diagrams. Specifically,



there exists a known isomorphism @p: W& W, & --- & W, — (C*)P", which we de-
scribe explicitly. We compute the images of each of the basis elements under ¢} in W' o,
for 0 < i < k, where k = 0 or k = 1, in Section [3] laying the groundwork for future induc-
tion. For k = 1, the solution to the more complicated case is that the image of the diagram

id, € W is equal to 31 '[n — i],D;, where the diagrams D; are shown in Figure .

Dy D, Ds

N

JEN

Figure 2: The diagrams D; for n = 4, the diagrams in the image of id,,.

In Section [4, we describe a method to reduce the computation of images of each of the
basis elements of W ,, for 1 <4 < k to the computation of the image of a basis element
in W2 In Section , we explicitly describe the decomposition (C?)$" ' @ (C?)P" ! =
(C*7"|1L,_, and lay the groundwork for Section [6] in which we describe inductive formulas
to explicitly compute the decomposition for general k. Specifically, the combination of The-
orem [4.9[and Theorem |6.9] allows us to explicitly compute ¢} : W2 @ W & --- W) 5, —
(C?)" for all k and n.

As Chen [7] gives a diagrammatic description of Lusztig’s dual canonical basis, a possible
application of this research is to use this explicit decomposition to define the notion of a
canonical basis for the Specht modules by having the Specht module inherit the canonical
basis. Furthermore, the explicit decomposition of the spin representation allows us to view
systems with many electrons as multiple one-particle systems, simplifying computations in

quantum mechanics.

2 Background

2.1 The Temperley-Lieb Category

In this section, we introduce the Temperley-Lieb category. We also introduce notation

that will be used throughout our paper.

Definition 2.1. A (m,n)-diagram comprises two parallel lines with m vertices on the bottom



line and n vertices on the top line such that the vertices are connected by edges satisfying

the following properties:
e the edges are between the parallel lines,
e the edges do not intersect each other, and
e cach vertex is the endpoint of exactly one edge.

Given a (¢, m)-diagram and a (m,n)-diagram, we can obtain a (¢,n)-diagram by con-
catenation. In concatenation, a contractible loop may appear; we remove it and multiply the

1

resulting diagram by formal variable § = —q — ¢~", where ¢ € C is not a root of unity. An

example of concatenation is shown in Figure [3
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Figure 3: The composition of a (3, 5)-diagram and a (5, 5)-diagram.

Definition 2.2 (Temperley-Lieb Category). The Temperley-Lieb category, denoted TL, has
objects {[n],n € Z>o}, where [n] is a set of n vertices. The morphisms Hom([m], [n]) is the

vector space with a basis of diagrams consisting of (m, n)-diagrams.
We call the edges of a diagram links. We say a link is

e straight if it connects the 7th vertex on the bottom line to the ith vertex on the top

line,
e quasi-simple if it connects two vertices on the same line, and

e simple if it connects two adjacent vertices on the same line.



Define €' € Hom([n], [n—2]) to be the diagram connecting the ith and (i+1)th vertices on
the bottom line and containing no other quasi-simple links. Similarly, define ¢ € Hom([n —
2], [n]) to be the diagram connecting the ith and (i 4+ 1)th vertices on the top line with no

other quasi-simple links. An example of these diagrams are shown in Figure [4]

N

JERN

Figure 4: Diagrams for €5 and d;, respectively, in Hom([4], [2]).

Every diagram in the Temperley-Lieb category can be decomposed into certain genera-

tors, as described by the following theorem.

Theorem 2.3 ([9]). The algebra @

e and O

K3 77

mn€Zso Hom([m], [n]) is generated as an algebra by all

where 1 <1 < n — 1, with the following relations:
(i) -0} = —q—q ", and

(1) (id®el) - (0! ®id) =id = (! ®id) - (id ® 7).

2.2 The Temperley-Lieb Algebra

In this section, we introduce the Temperley-Lieb Algebra, the object that is central to

our paper. Refer to an (n,n)-diagram as an n-diagram.

Definition 2.4 (Temperley-Lieb Algebra). Let the Temperley-Lieb algebra, denoted TL,,
be Hom([n], [n]), the vector space spanned by diagrams with n vertices on both the top and

bottom lines. Let tl, denote the set of diagrams of TL,,.

Let e; refer to the diagram with a simple link connecting the ith and (i + 1)th vertices,
counting from the left, on each line and with straight links everywhere else (for example, see
Figure [5)).

As a corollary of Theorem we can state the following Proposition, describing the
Temperley-Lieb algebra in terms of generators. Recall that § = —¢ — ¢~ L.
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Figure 5: The diagram e; in TLy.

Proposition 2.5 ([10]). The algebra TL, is generated by {e1,...,e,_1} defined by the fol-

lowing relations:

e? = (- e, eeire; =e;, and e;e; = eje; for i — j| > 2.

2.3 The Spin Representation of the Temperley-Lieb Algebra

In this section, we discuss the spin representation (C?)®", an important object in many
areas of mathematics and physics, and how the Temperley-Lieb algebra acts on it.

Let v, denote (1,0) € C? and v_ denote (0,1) € C?. The 4-dimensional vector space
C? ® C? has basis {v; ® v, v, Qv_,v_ Qvy,v_ Quv_}.

Let e: C* @ C* — C be

vy Q@uy = 0,0 Qv = —q,v- Quy — L,v_Q@u_+— 0

and let 6 : C — C?* @ C? be
=y ®@u_ — q o & V4.
Let e7: (C*)®" — (C?)®" 2 be (Id)® ! @ e ® (id)®*"*! and §7: (C*)®"2 — (C*)®" be
id*'®d§ ®id®"
Since €] and J7' generate the algebra €, , -, Hom([m], [n]) and all the relations in Propo-

sition [2.5| are satisfied, we have an action of @,, .5 Hom([m], [n]) on @,,.,(C*)*",

We can consider the case of m = n to obtain a representation of TL,,.
Definition 2.6. The spin representation is the action of TL,, = Hom([n],[n]) on (C?)®".
The spin representation is the central object of our paper.

Example 2.7. We describe an example of how TL, acts on (C?)®%. Given the first diagram
in Figure [6] we write it in terms of the generators of TL by decomposing it as shown in the

second and third diagrams. Explicitly, the first diagram decomposes into §}d5¢2¢3.
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Figure 6: An example of how a TL, diagram is sliced.

We label each tensor product with its original position for convenience purposes. The

action of the following diagram (Figure @ is as follows:

CCeCeCieC: ¥ 22 X9 22 —— C 25 C2oCiC2RC2 |

2.4 A Diagrammatic Interpretation of the Spin Representation

Khovanov [6] introduced the possibility of a diagrammatic interpretation of the spin
representation. Chen [7] generalized his work, representing Lusztig’s dual canonical basis [§]

as diagrams in the Temperley-Lieb algebra.

Definition 2.8. Let (C?)7™ denote the subspace of (C?)®" generated by vectors of the form
Vg, @ -+ @ v, such that k of the a; are — and n — k of the a; are +.

Remark. As the spin representation parametrizes the positions of n electrons, each of which
has either spin-down or spin-up, the module (C?)¥" parametrizes the positions of n electrons

where k of them have spin-down and n — k have spin-up.

First, we define the notion of a diagrammatic basis for the induced representation that

will be used to view the spin representation in terms of the diagrams of tl,,.

Lemma 2.9 ([7]). For all 1 < k < n, Ind%:(@mn% Civ is precisely generated by the
diagrams in which the only quasi-simple links on the bottom line connect k —i to k+ 141

for some i, which is the diagrammatic basis of the left hand side.
Definition 2.10. Let C} denote the diagrammatic basis of Ind%:@)TLnfk Ciriv-

The following proposition describes how the spin representation can be viewed through

diagrams of tl,.

Proposition 2.11 ([7]). There is an isomorphism of TL,-modules:
Ind%Z@TLn,k Criv = ((32)?717
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and the isomorphism identifies the diagrammatic basis of the left hand side to the dual canon-
ical basis of the right hand side.

Therefore, (C?)$" is generated by the diagrams in CJ.
We can extend Proposition to the entire spin representation to obtain the following,

giving a diagrammatic basis of the entire Temperley-Lieb algebra.

Corollary 2.12 ([7]). There is an isomorphism of TL,-modules

D e, , Cue = (C)"

0<k<n

which identifies the diagrammatic basis of the left hand side to the dual canonical basis of
the right hand side.

With these results, we can work with (C?)®" in terms of the diagrams in tl,.

2.5 Specht Modules

We now study the irreducible representations of (C?)£", called the Specht modules, which

are another important object in our work.

Definition 2.13. A diagram is monic when it does not have any simple links on the bottom
line. For 0 < ¢ < n such that £ = n (mod 2) let w} denote the set of monic diagrams with

n vertices on the top line and ¢ vertices on the bottom line.

Definition 2.14 (Specht modules). The Specht module W} is the TL,-module which is the
quotient of Hom([¢], [n]) by the image of left multiplication by eﬁ_Qs.

The following lemma gives an explicit description of the action of TL, on the Specht
Module.

Lemma 2.15. The Specht module W' has a basis consisting of the diagrams in wy. A
diagram D € tl,, sends D" € w} to the concatenation DD’ if the (n,()-diagram DD' remains

monic, and to O otherwise.

Example 2.16. The composition of the two diagrams in Figure [7]is 0, as the monicity of

the diagram in w$ is not preserved.

The following Proposition can be obtained through results in [T1].



Figure 7: A diagram in the Specht Module W¢ (left) and a diagram in the Temperley-Lieb
algebra TLg (right).

Proposition 2.17 ([I1]). The TL,-representation (C*)$" for k < n/2 can be uniquely (up
to scalar multiplication) decomposed into a direct sum of Specht modules W &@W ,&--- @
Wi o

Proof. There is a decomposition of (C*)®" as a TL,, ® U,(sl,)-module ag'|

"= @ ok X CQ)%}Z ke (1)

0<k<n,/2

Since Kvy = ¢*'vy, the ¢’-eigenspace of K in (1)) gives that

(CQ)%% = @ Wi_ok- [

0<k<|(
As both (C*)P" and W} for all 0 < ¢ < k where k£ = n (mod 2) have a diagrammatic
interpretation, a natural question to ask is how the above isomorphism interacts with the

diagrammatic perspective. We investigate the images of the diagrams in w}, leading to an

explicit decomposition of the spin representation.

3 Computation of ¢} for k=0 and k=1

In the previous section, we have defined an isomorphism ¢} : W @W) ,®-- - W 5. —
(C?)£". In this section, we describe ¢7 explicitly in terms of diagrams for k = 0 and k = 1,
laying the groundwork for an inductive computation for general k in Section [6] Recall that
wy denotes the diagrammatic basis of W}, tl, denotes the diagrammatic basis of TL,,, and

C* denotes the diagrammatic basis of (C?)§". This notation will be used throughout the
paper.

Lwhere X denotes the box tensor product.



Lemma 3.1. The image of the unique diagram in w, under @y is equal to the identity

diagram in tl,.

Proof. In both W,, and TL,,, the action of the generators e; (see Figure |5) for all ¢ send the

diagram described in the lemma to 0. O

Recall that € and 07" (see Figure [4)) are the generators of the Temperley-Lieb category.
Proposition 3.2. We can describe the image of ©} as follows:
(i) the image of a diagram D € w"_, is equal to De}™?; and

(ii) the image of the diagram id,, € w? is equal to Z?;Ol [n —i],D;, where D; = &7 - €} for
1<t <n—1 and Dy is the identity diagram in tl,.

Proof. First, statement (i) is true as the actions of e; for all ¢ will be consistent across both
Wn , and (C?)$".

Now, we prove statement (ii). The action of e; on Dy will give Dy for i = 1 and 0 for
1 # 1. For each D; for 1 <i <n — 1, we have that

e;Di=< D, ifj=i+]1

0 otherwise.

Let ¢; denote the coefficient of D; in ¢7(id,). It is necessary that e;p}(id,) =e; >, ¢;D; =0
for all j. From the action of the e; on the diagrams described above, we obtain that ¢,_; = 1,
th2=—F=q+q"

that that ¢,,_; = ‘f;__qq; = [i],- Therefore, we obtain that ¢7(id,,) = S1'[n — i],D;. O

,and ¢, = (¢ + ¢ V) epn_iz1 — Ca_iyo. Induction allows us to conclude

This proposition will be used in Section [0] as a base case for our induction procedure.

4 Reduction Procedure For General k£

In this section, we describe how to calculate the images under ¢} of the diagrammatic
basis of W ,, ..., W ,, by reducing the problem to computing the images of the dia-
grammatic basis of W2, ..., W;::;k under gp’,j:f. This procedure can be applied repeatedly,

allowing us to reduce the problem of computing ¢} (W ,,) to computing @}~ 2 (W 2). We



construct this reduction by proving this reduction for the specific case of diagrams with links
in the top left corner in Proposition[4.7, and then extending it to all diagrams in Theorem [4.9|
The commutative diagram in Figure [§] summarizes the reduction procedure we describe

in this section.

n—21
Pr—i

anZi

n—21

2\®n—21
((C )k—i
D>—>H36]Dl lD’_)Hj(Sk'D'H;':OEZ_QiJer
©p
o — s @)

n—21

Figure 8: How the computation of ¢ (W ,,) reduces to the computation of ¢}~ (W™ J").

Recall that (CH)$" 2 2 W/ 3 - @ W' 2 and (CH" =X Wro WP, - @ Wn,,.
The action of D € tl,,_s on C?” is defined using the embedding TL, 5 < TL,, which sends

e; t0 €;42. An example of the embedding is in Figure [0

N

£

Figure 9: A basis element of TL3 embedded into TLs.

Definition 4.1. Define the map ®: (C?)¥"% — ((C)P™")=% by ®: D + 67 - D - €} for

diagrams D in C’,’:__f )
The map P is a specific case of the rightmost map in Figure
Lemma 4.2. The map ® is an isomorphism of TL,_s-representations.

Proof. We can verify that ® is well-defined and commutes with the action of TL, o, so it is
a homomorphism.

Let S be the set of diagrams D in C}' that can be expressed in the form D = 6} - D',
where D’ is any diagram in Hom([n], [n — 2]) in TL (in other words, D contains a link in the
top left corner). Let R be the set of diagrams in the same set C}' that cannot be expressed
in this way (in other words, the diagrams in R do not have a link in the top left corner).

A vector v in ((C?)7™)*=F can be expressed as >, .sapD + > 4. baA, where the ap

and by are coefficients in C2. As every individual component apD has eigenvector e; with
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eigenvalue 3, ) ,.p baA must also be e;-invariant with eigenvalue 3. However, e; sends any
diagram A € R to a diagram in S, which implies that ), ,b4A = 0, so v is spanned by
diagrams in S.

We now show that & is surjective. Every diagram in S has e; as a eigenvector with
eigenvalue 3, so we conclude that ((C?)F™)*=? is generated by diagrams of the form 7 - D.
Furthermore, as such a diagram in Ind%Z@)TL%k Ciriv must also have a link on the bottom
line connecting the kth and (k+ 1)th vertices, it can also be expressed in the form 67 - D - €}.

Injectivity follows from construction, so ® is an isomorphism. O]

Remark. The map ®: D +— 67 - D - €} in Lemma is adding a link to the top left and a
link on the bottom line between the kth and (k + 1)th vertices of D.

Example 4.3. The diagram on the left maps under ® to the diagram in the right in Fig-
ure 101

Figure 10: An example of a map from a diagram in (C?)$* to (C?)$° under ®.

Definition 4.4. For each 1 < i < n/2, define ®,,_o;: W' 2 — (W"

n—21i n—21

)= by
D, _0i: D 5? - D.

This is a specific case of the leftmost map in Figure [§
Lemma 4.5. The map ®,_o; is an isomorphism of TL,-modules for all i.

Proof. Using a method similar to the proof of Lemma [4.2] we can verify that ®,,_; is both

well-defined and intertwining with the TL,,_5 action for all ¢, so it is a homomorphism.

n—2
n—2i

(so S is the set of diagrams that have a link in the top left corner). Let R be the set of

n
n—21

Let S be the set of diagrams D in w]._,,; that can be expressed as d7 - D where D € w

that cannot be expressed this way. A vector v in (W ,,)**=% can be

diagrams in w 4y

expressed as » pes apD + > acr PaA. As every individual component apD has e; as an

eigenvector with eigenvalue 3, > ;. baA must also have 3 as the e;-eigenvalue. The action

11



of e; on any diagram in w;_,, must map to either zero or a diagram in S, so it cannot
send A € R to SA. This implies that ), ,baA = 0, so v is spanned by diagrams in S.
Furthermore, every diagram in S has a e;-eigenvalue 3, so we conclude that (W™ ,.)=# is
generated by diagrams that can be expressed in the form 07 - D.

The above implies that ®,,_o; is surjective, and injectivity follows from construction, so

®,,_o; is an isomorphism. ]

Remark. The map ®,,_o;: D +— 07 - D in Lemma is adding a link to the top left corner
of D.

In addition to Lemma 4.2 and Lemma 4.5 we can use the following general result, which

follows from Schur’s Lemma.

Lemma 4.6 (Schur’s Lemma). Given irreducible representations Ay, ..., A, and A}, ... A
of TL,, such that A; 2 A; and A} 2 A} when i # j and ¢;: A; = A} is an isomorphism for
alli, if p: Ay ®--- B A = A ®--- & Al is an isomorphism, then |, lands in A} and is a
multiple of ¢;.

We can now prove the following proposition, which reduces the problem of computing

n

the images of diagrams with links on the top left corner in w]_,; to computing the images

n—2"

of diagrams in w"~2.. This proposition is generalized in Theorem .

Proposition 4.7. The image of the isomorphism ®: (C?)2"? — ((C*)$™)=# of each com-
ponent W2 of (CZ)%fl_Q falls in W _,,. Furthermore, the restriction of ® for each compo-

nent W2 is equal to the map ®,, ;.

Proof. Lemma gives an isomorphism ®: (C?)¥"? — ((C?)¥")*= and Lemma
give isomorphisms between irreducible representations ®, o: W3 — (WP )a=8 ..
Dy op: WIS — (W, )=, Lemma implies that the restriction ®|y»  is precisely

P —2i. 0
From this inductive procedure, one can also compute the images of every diagram in

n n ool : : : n—2 n—2 n—1
Wy _g, ..., W, _g under ¢} given the images of the diagrams in w,,~5, ..., w;—5, under ¢; ;.

Lemma 4.8. Given any diagram 0] - D in either a Specht module or the Temperley-Lieb

algebra, the action of e;11 sends it to 6;,, - D.

Proof. This lemma follows by the fact that e;;10; = d;11. O

12



The following theorem is the main result of this section, allowing us to reduce the problem

of computing @} (W7 ,,) to computing @~ (W =3").

n

Theorem 4.9. Let D = 5"D’ where D' € w"
Let Sok_l( ') = ZAetlnq cAaA. Then

be a diagram in w!_,. for some 1 <1 < k.

n— 217 n—21

or (D) = Z cady - A-ep.

A€tl,—2

Proof. Lemmaimplies that given @} (67 - D) for any 67-D € (W ,,)%=C, one can obtain an

element in (W;_,,)%+ =% by 67D +— 67",

vector spaces (W, )&=F = (W, )e+1=8 50 every element of (W ,,.)%+1=% can be obtained

D. Note that this operation gives an isomorphism of

this way.
As Proposition gives the image of (W ,,)**=% under ¢}, we can compute the image
of (W ,.)%=F under ¢} for all 1 < j < n—1, yielding the explicit irreducible decomposition

of (C2)2m. O

With this theorem, we obtain that for ¢ = 1, Figure |8| commutes. We can repeatedly

apply this theorem to obtain the reduction described in the diagram for general 7.

Remark. In this section, we reduced the problem of computing the images of the diagrams

in w!_,. with links in the top left corner, and we reduced the problem of computing the

n—21

images of the other diagrams of w)_,, through applying actions of e; to the former case.

n—21
Alternatively, we could have also directly computed these using reduction, as (C?)}~ 1 is

isomorphic to ((C?)?)%=# as TL;_; ® TL,,_;_;-modules.

5 The Decomposition (C?)7" '@ (C*)P" ! =~ (C*)2"ry,

The spin representation can be decomposed into a direct sum of “smaller” spin represen-
tations. In this section, we describe the isomorphism (C2)?"~! @ (C?)?" ! = (C?)2"|1y,_,
explicitly, using it to give an inductive procedure to compute ¢} (W) in the next section.

We use the following result from [12] in order to prove Proposition , which allows us to
decompose the spin representation into spin representations of a smaller number of electrons,
thus allowing us to describe an inductive procedure to calculate the image of the generator
of (W) in Section []

Lemma 5.1 ([I2]). There is an isomorphism of TL,_1-modules W}|rr,,_, = W@ W

13



Proposition 5.2. There is an isomorphism of TL,_i-modules (C?)"|11,_, = (CH)P" ' @

(O

Proof. Proposition states that (C?)y" = W™ @ --- @ W ,,. Restricting the action on
both sides to TL,_1, we obtain from Lemma [5.1| that (C?)$™ is isomorphic to

Wad @ Wi @ Wiy @ Wi =W @ Wi @ Wy, @ Wi, @ Wity
= (C)" e (C)T
We describe one such isomorphism explicitly.

Definition 5.3. We define the map 7 @ ¥ : (C3)¥" '@ (CHE" 1 — (CHP"|rw

component.

on each

n—1

o Let O} be defined by mapping a diagram D € C’,?_l to the diagram D with a link
added to the right.

o Define ¥} as mapping the identity diagram id,—; to 0p€; + (200 €f + -+ + [n —
k) 0 €. Extend it to be compatible with the TL,,_;-action.

In this section, we show that ©F} & U} is an isomorphism. First, we show that it is a

homomorphism.
Proposition 5.4. The maps O} and UV} are well-defined homomorphisms.

Proof. Firstly, ©} is a homomorphism of TL,,_;-modules. Indeed, adding a link at the end
does not affect any actions or relations.

We prove that the actions of ey, ..., e,_1 send ®}(id,,—1) to 0. First, we consider ej. The
action annihilates all of 07 ,€} to d_;€} as it creates a link on the bottom line between the
(k4 2)th and (k 4 3)th vertices. What remains is ey (07 € + [2]407,1€r) = Bey + [2]qer = 0.
Now we consider e; for ¢ > k. The action annihilates everything except for [i — k],01" ;e +
[i — k + 1]407€r. Furthermore, e;([i — k]g07 (€} + [i — k + 1|07 ep + [i — k + 2]407 1 €}) =
[i — k], 00 el + [i — k + 1],B0% €y + [i — k + 2],00 €} = 0.

As (C?)Pnt =~ Ind%: oTL,_, Curiv, the universal property of induced representations
states that there are no further relations. O

We compute the image of certain diagrams under W}, which will be used in Section [6]
Lemma 5.5. The map U} sends 67 '€}~ to 6rep_, (0f + 214611 + -+ + [0 — Kk]0r_ ) er.

n—1

14



Proof. To obtain the image of 6;~ 116 under ¥}, we apply e;_; to id,,_; and compute its
image. The image will be 6 €}_, (67 €p 42|07, 1 €p+- - -+ [n—k]g07_ ;) by Definition[5.3, O

Finally, we prove the following result, which allows us to use induction to compute
(W) in Section [6]

Theorem 5.6. The map O} © V] defines an isomorphism of TL,,_1-modules.

Proof. Each of the diagrams in C’,’j_l maps to a unique diagram in C} with a straight
link on the nth vertex. The last term the images of each of the diagrams in C}~| gives a
diagram d;'e}_,0,'_; €} that does not appear in the image of any other diagram under O} & ¥}

Therefore, each of the images are linearly independent. O]

6 Computation of ¢} (W) Using the Decomposition

Recall that ©F @ U7 : (CH)P" ' @ (C?)2" ! — (CH)"|1y,_, is an isomorphism by Theo-
rem [5.6

We state the following proposition, which we use to inductively compute f(W?).

Proposition 6.1. Given vectors z}* € @ H(WI) in (CHE" ! and 27~} € o)1 (W)
in (C?)¥"T U that are annihilated by the actions of eq, ..., en_o, the one-dimensional space
O (W) is generated by the unique (up to scalar) vector in (C?)¥" that is annihilated by the
actions of all e;s. This vector is the unique (up to scalar) linear combination of O (z} ™)

and W (z}~1) that is also annihilated by e, ;.

Proof. The image of the identity diagram id,, in W under the homomorphism ¢, is the
unique vector (up to scalar) that is annihilated by the actions of all e;s. This vector is in
the space V' of vectors that are annihilated by the actions of e; for 1 < i < n — 2. Due
to the TL,_;-module isomorphism O} & ¥}, the subspace V' is 2-dimensional, generated by
Or(zp ') and W (z}}). Therefore, the vector in (C?)¥" that is annihilated by the actions

of all ¢;s is a linear combination of OF (27~ !) and UI(x}—}). O

We construct a sequence z', in which each term is a linear combination of the images of

the two before, and each term is annihilated by the action of every generator.

Definition 6.2. Let 27 = 2" = id,, and define 27 inductively by [n—k],2% = [n],0%(z} ") +
Ui (2p7))-
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We show that «} is the unique vector that is annihilated by all of ey, ..., e,_1 in (C?)$".
Note that for & = 0, id,, is annihilated by the action of every generator, so this statement
holds. In this section, we inductively prove that z} defined this way is annihilated by the

action of all the generators, for general k.

6.1 The £ =1 Case

We first show that z is annihilated by the action of all e;s. To do so, we introduce the

following lemma.
Lemma 6.3. We have the relation [n],[n —i — 1], + [i], = [n — 1]4[n — i,

Proof. We have the above is equal to

n __ ,—n n—i—1 _ _i+1-n i 1
_"—q" g ¢ 4 =g

q—q* q—q* q—q*
q2n—i—1 _ qi+1 . q—i—l + qi+1—2n + qi—l-l _ q—i+1 _ q—1+i + q—i—l
(q—q71)?
q2n—i—1 + qi+1—2n _ q—i—l-l _ q—1+i
(q—q71)?
(@ =@ =)
(q—q71)?

= [n — 1],[n — i, O

[n]q[n —i— 1]q + [i]q

With this, we can show that the definition of z7 is consistent for the £ =1 case.

Proposition 6.4. The inductive computation of 7 by [n—1],27 = [n],OF (x7 1) + ¥ (zg 1)

yields that x7 is annihilated by the action of all the generators.

Proof. We give a formula for 27 by induction. In the base case, we have that O} (z]) = id;.

By the inductive hypothesis, we have

[n]q@?(x?_l) = [nlq (Z[n —i— 1g0fe + [n — 1]qidn>

=1

and

i
L

Ui (g ) = ) _lilg07er

i=1



The sum of these two expressions is

[n]g[n — 1]gid, +[n — 1],07€" + Z Jn —i— 1], + [i],)0rer.
=[n—1, (Z[n — ilgbi'et + [nlq idn> ,

due to Lemma (6.3, so 27 = S '[n — i],6"¢} + [n],id, which Proposition states is
annihilated by all the generators. O

6.2 Inductive Computation for General k

In this section, we prove that 2%, as defined inductively by [n — k],2% = [n],O(z} ") +
WP (zp~1), is annihilated by the actions of all the generators. The vectors ©F(z} ') and
U2 (z7~]) are both annihilated by the actions of ey, ..., e, 9, so by Proposition a lin-
ear combination of them must be annihilated by e, ;. The action of e, ; is defined by

the action of €' |, so we consider this action for the sake of simplicity. Computing the

n—1s
coefficients of €} allows us to obtain the linear combination, so it is sufficient to com-
pute coeffen (e O (2 1)) and coeffan (e U7 (2~})) and show that the coefficient of €}
of [n] e O () + e, P (2} 7]) is equal to 0.

We reduce the problem of computing coeffx (e, OF (zi71)) and coeffen (€ Wi (7 ) to
computing the coefficient of id,,_; in x?’i in Proposition , Proposition , and Lemma .
We then compute the coefficient of id,,_; in x}f‘_i in Lemma m leading to Theorem , an
inductive formula for computing ¢} (W?).

First, we reduce the problem of computing coeffer (€}, O ().
Proposition 6.5. We have that coeffn (e,_107 (z} ")) = coefliq, ,(a77).

Proof. By the inductive hypothesis, [n —k — 1],27" " = [n— 1],07 (27 2) + U (2772). We
must compute the coefficient of €} of k—l]( OO (27 7?) + €, 1 O (277)). Since
@f is a map adding a straight link to the right, ©7207 ' (2}7?) is a diagram with a straight
link on both the (n — 1)th and nth vertices, so the action of €, sends it to 0. Therefore,
e OpT T (@),

Note that €, _1(D) is zero if D has two straight hnks to its right. As the action of O}
adds a straight link to the right of a diagram, W}~ (2}~ f) must have a simple link between
the (n — 2)th and (n — 1)th vertices on the top row.

we only need to compute the coefficient of € in F—=—-
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We show that W7~ !(D) for D € C}"2 has € as a term if and only if D is the identity
diagram on n — 2 vertices. Note that by Theorem [5.6] we obtain that

VYD) = D& el + [Q]qDCS,ZHl e+ [n—k—1,D5" et

If D is a nontrivial diagram in C}'"Z, we only need to consider D3 3} ™' as it is the only
possibility where a simple link connecting the (n — 2)th and (n — 1)th vertices on the top
line appears. Furthermore, D must also have a simple link between the (k — 1)th and kth
vertices. In the edge case where k > n — 2, there will no longer be a link connecting the
(n — 1)th and (n — 2)th vertices in D3'"5€; ", so it will be sent to 0. If k < n — 2, the link
connecting the (k — 1)th and kth vertices in D will create a second quasi-simple link on the
bottom line in D" ~5€p . Therefore, in this case, coeff,, (¥} (D)) = 0.

If D = id,_», recall that by Definition 5.3, ¥}~ (D) = & 'ep " + [2]00 e + - +
[n—k—1],0""3€~". In this case, as €*_, 67} = €} when k < i < n—2 implies that i = n —2,

we obtain that coeffe (e, ;O Wy~ 1(1dn_2)) = [n — k — 1],. Therefore,

1

coeff, (6,107 (2} 1)) = k=1,

coeffeg(e;‘_l@z\lfz_l(ﬂvz 7)) = coeffiq, ,(z3=7). O

Similarly to the above proposition, in the following proposition, we reduce the problem

of computing coeffe (e}, U7 (2} 71)).
Proposition 6.6. We have the recurrence relation
coeffen (e 1 Wi (7~ D) = —[n — k + 1coeffiq, , (x7-1) + coeffsn-1n 1(xz D.

Proof. We show that if ¥%(D) has a term that is €}, D € C'~] must be either id, ; or
6" 5er~1. Recall that by Theorem. we obtain that V(D) = Ddype} + [2],D6 ef + -+ +

[n — k| Doy ey~
In the case where D = id,_1, only €0, _,€; and €._,0_,€; create a coeflicient of €].
The coeflicient of €} in ¥} (id,—1) is [n —k — 1] — [2][n — k] = —[n — k + 1]. In the case where

D is not the identity, for the coefficient of €} to be nonzero, D must be equal to ¢;,— %e’,z } as

otherwise there will be a simple link on the top line. If this is the case, the only term where
n— 1571

nlnl)

a coefficient of €} appears is 8/ 5€~ . In this case, the coefficient of €} in W} (5, 5€,—;

is 1. Combining this information, we obtaln this proposition. O]

We further reduce the original problem, proving that computing the coefficient of the
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identity diagram is sufficient to compute coeff §r-lenl (zp71).

Lemma 6.7. We have the relation coeffgn-1 n1 (z371) = coeffiq, ,(x}73).

Proof. As [n — 1 — k@i~ = [n — 1],077 (2} 1) + WP 1(z}=2) and each component of
@Zj(:pk 1) has a rightmost straight link as ©;~; is a map that adds a straight link to the
right, we obtain that coeffsn-1 1 (z}7]) = Coeffén 1 n:}(\ll’,z:% (z}73)). Similarly to the proof
of Proposition , UP~1(D) has a term of 6/~ %GZ % if and only if D = id,_o. Therefore,

cooffge 1.1 (517L) = [ — Klcoeffa, ., (e172). a
| — _ : n] _ __ [n)g!
Define [al,! = [a],[a — 1], ... [1], for integer a. Furthermore, let [k}q = T

We can compute the coefficient of the identity diagram inductively by using the recurrence
found in Lemma [6.7]

Lemma 6.8. We obtain the formula coeffiq, , (z771)

(],

Proof. Since 27~} = I=lag@n-l(gn-2y 4 = k],\I!Z H(x}~3) by the inductive hypothesis and

Tl

P
every term in W] (2} "5) is nontrivial, we conclude that

n—1
coeffig, ,(z}°1) = [ ]qcoeffidn_l(@ﬁii(ﬂfz )

[n — kg
Repeating this process, we obtain that
[n —1] [k] n—1
coeffig, (277 ]) = —-2 . 1 = : O
e [n — k] [1]4 k_lq

Combining all the results in this section, we can prove the following theorem, one of the

main results of our paper.

Theorem 6.9. The vector x} in (C?)", defined by the inductive formula [n — ka8 =
[n],O8(z} 1) + U (2}~ 1), is annihilated by the actions of all e;s.

Proof. We must show that the action of €?_, on [n],©%(z} ™) + WP (2771) is equal to 0. By
Proposition this is equivalent to proving that the coefficient of €} of [n],e?_, 0% (z} 1) +

N i }) is equal to 0.
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By Proposition [6.5] Proposition Lemma [6.7, and Lemma [6.8] we have that

—[n — k + 1] coeffiq, , (277]) + coeffgn-1 n- 1($Z D

coeff o (e Ui (27 7))
1

n
k
coeffen (€1 OF (7

coeffig, ,(x)~ f)
~ln—k+1,[;7] + [,
3,
—[n—k+ 1]q[n - 1](1 + [k — 1]q
[n — k]q

= —[n],

This implies that [n],©F(x} 1) 4+ U2(z}"}) is a vector that is annihilated by all generators
in (C*)2", proving the theorem. O

Theorem gives an inductive procedure for the computation of ¢ (W), while the
results in Section' 4l specifically Theoremm 4.9 allow us to reduce the computation of o (W)
to the computation of ¢} 2 (W"~2"). These two cases cover all of W"@--- @ W™ ,, . allowing

us to explicitly compute the irreducible decomposition of the spin representation into Specht

modules.

Example 6.10. We explicitly compute z3. We have that [2],25 = [4]03(z3) + ¥3(23). By
Proposition 3.2 ©3(x3) = [1],01es + [2],05¢5 + [3],ids and 23 = [1],05¢3 + [2],6%€} + [3], ids.

Therefore,
Wy(a1) = [Ug(0zez + [2]4020565€5) + [2]4(01es + 0105€5€3) + [3]4 (0265 + [2]403€3).

From these, we obtain that

[2]q23 =[4]4([1]¢07 s + [2]405€5 + [3]4ida)
+ [1g(2¢ + [2]40205¢565) + (2], (01 €3 + 010565€5) + (3] (d5€5 + [2]403€2)
=[4]4[3]q id4 +([4] [2]g)o1es + ([4]g[2]g + 1 + [3])dze5
+ [3]4[2]¢03€3 + [2]40205€5¢ + [2] 401 03€5¢5.
Therefore,

vy = (Bl + 1) ida +[3]401€ + ([4] + [2]g)02€5 + [Ba05e + 0305€5¢5 + 01056565
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