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Abstract

The spin representation (C2)⊗n can be decomposed uniquely into irreducible modules called
the Specht Modules, denoted W n

k . Lusztig’s dual canonical basis of the spin representation
can be viewed as diagrams of the Temperley-Lieb algebra, and the Specht Modules also have a
diagrammatic basis. We explicitly describe the decomposition of the spin representation into
Specht Modules, (C2)⊗nk

∼= W n
n ⊕· · ·⊕W n

n−2k, by computing the images of the diagrammatic
basis elements of the Specht Modules. We do this by using induction to compute the image of
W n
n and reducing the problem of computing the images of other Specht modules to this case.

Our results may lead to the notion of a canonical basis for Specht Modules in the future.

Summary

In both mathematics and physics, a common method of understanding complicated systems
is to break them down into smaller pieces. Accordingly, it is known that a multiple-electron
system can be viewed as multiple single-particle systems, but mathematicians and physicists
do not yet know which single-particle systems a multiple-electron system explicitly breaks
into. This paper investigates the question of computing such a decomposition explicitly.
To do so, we investigate both the multiple-electron and single-particle systems mathemati-
cally and visually. We view multiple-electron systems using a mathematical object called the
Temperley-Lieb algebra, an object defined in terms of diagrams with applications in statis-
tical mechanics, representation theory, and topology. Similarly, we view the single-particle
systems through certain diagrams of mathematical objects called Specht Modules. We com-
pute how the Temperley-Lieb algebra explicitly relates to the Specht Modules through how
the diagrams of both objects explicitly relate to each other. This, in turn, allows us to com-
pute how a certain system with multiple electrons decomposes into systems with only one
particle, simplifying computations in quantum mechanics.



1 Introduction

The spin representation (C2)⊗n is an important object in various areas of mathematics

and physics. Since it was first introduced by Cartan in 1913 [1] and applied to physics

by Dirac in 1928 [2], mathematicians and physicists have studied it extensively. The spin

representation parametrizes configurations of n electrons, each of which has spin-up or spin-

down. We focus on (C2)⊗nk , which parametrizes configurations with k spin-down electrons

and n− k spin-up electrons.

If one considers the spin representation (C2)⊗n as a representation of a quantum group,

the algebra of endomorphisms that commute with the action of a quantum group is precisely

TLn, the Temperley-Lieb algebra on n vertices. First introduced by Temperley and Lieb in

1971 [3], the Temperley-Lieb algebra has applications in statistical mechanics, representation

theory, and topology. As a vector space, the Temperley-Lieb algebra is generated by diagrams

consisting of two parallel lines with n vertices on each line, where each vertex is connected

to exactly one other vertex and no lines intersect (see Figure 1).

• • •

• • •

• • • •

• • • •

• • • •

• • • •

Figure 1: Examples of diagrams in the Temperley-Lieb algebra.

The spin representation with k spin-down electrons, (C2)⊗nk , decomposes uniquely into

irreducible modules named Specht modules, which are a generalization of the irreducible

representations of Sn introduced by Specht in 1935 [4]. One method often used to understand

algebraic structures, such as modules, is to find a diagrammatic interpretation that allows

mathematicians to visualize the object combinatorially. Martin [5] discovered a diagrammatic

basis for the Specht modules: the Specht module W n
k for k ≡ n (mod 2) can be expressed

as a vector space spanned by certain diagrams from n vertices to k vertices.

Similarly, Khovanov [6] first introduced the possibility that the spin representation may

have a diagrammatic interpretation. The author [7] generalized his work, allowing one to view

the spin representation, specifically Lusztig’s canonical basis [8], in terms of the diagrams of

the Temperley-Lieb algebra.

This paper investigates the natural question of how to explicitly compute the decompo-

sition of the spin representation into Specht modules in terms of the diagrams. Specifically,
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there exists a known isomorphism ϕnk : W n
n ⊕W n

n−2 ⊕ · · · ⊕W n
n−2k → (C2)⊗nk , which we de-

scribe explicitly. We compute the images of each of the basis elements under ϕnk in W n
n−2i

for 0 ≤ i ≤ k, where k = 0 or k = 1, in Section 3, laying the groundwork for future induc-

tion. For k = 1, the solution to the more complicated case is that the image of the diagram

idn ∈ W n
n is equal to

∑n−1
i=0 [n− i]qDi, where the diagrams Di are shown in Figure 2.

• • • •

• • • •

D0 • • • •

• • • •

D1 • • • •

• • • •

...

D3

Figure 2: The diagrams Di for n = 4, the diagrams in the image of idn.

In Section 4, we describe a method to reduce the computation of images of each of the

basis elements of W n
n−2i for 1 ≤ i ≤ k to the computation of the image of a basis element

in W n−2i
n−2i . In Section 5, we explicitly describe the decomposition (C2)⊗n−1

k ⊕ (C2)⊗n−1
k−1

∼=
(C2)⊗nk |TLn−1 and lay the groundwork for Section 6, in which we describe inductive formulas

to explicitly compute the decomposition for general k. Specifically, the combination of The-

orem 4.9 and Theorem 6.9 allows us to explicitly compute ϕnk : W n
n ⊕W n

n−2⊕ · · · ⊕W n
n−2k →

(C2)⊗nk for all k and n.

As Chen [7] gives a diagrammatic description of Lusztig’s dual canonical basis, a possible

application of this research is to use this explicit decomposition to define the notion of a

canonical basis for the Specht modules by having the Specht module inherit the canonical

basis. Furthermore, the explicit decomposition of the spin representation allows us to view

systems with many electrons as multiple one-particle systems, simplifying computations in

quantum mechanics.

2 Background

2.1 The Temperley-Lieb Category

In this section, we introduce the Temperley-Lieb category. We also introduce notation

that will be used throughout our paper.

Definition 2.1. A (m,n)-diagram comprises two parallel lines withm vertices on the bottom
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line and n vertices on the top line such that the vertices are connected by edges satisfying

the following properties:

• the edges are between the parallel lines,

• the edges do not intersect each other, and

• each vertex is the endpoint of exactly one edge.

Given a (`,m)-diagram and a (m,n)-diagram, we can obtain a (`, n)-diagram by con-

catenation. In concatenation, a contractible loop may appear; we remove it and multiply the

resulting diagram by formal variable β = −q − q−1, where q ∈ C is not a root of unity. An

example of concatenation is shown in Figure 3.

• • •

• • •

• • • • •

• • • • • →

β·

• • • • •

• • •

Figure 3: The composition of a (3, 5)-diagram and a (5, 5)-diagram.

Definition 2.2 (Temperley-Lieb Category). The Temperley-Lieb category, denoted TL, has

objects {[n], n ∈ Z≥0}, where [n] is a set of n vertices. The morphisms Hom([m], [n]) is the

vector space with a basis of diagrams consisting of (m,n)-diagrams.

We call the edges of a diagram links. We say a link is

• straight if it connects the ith vertex on the bottom line to the ith vertex on the top

line,

• quasi-simple if it connects two vertices on the same line, and

• simple if it connects two adjacent vertices on the same line.
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Define εni ∈ Hom([n], [n−2]) to be the diagram connecting the ith and (i+1)th vertices on

the bottom line and containing no other quasi-simple links. Similarly, define δni ∈ Hom([n−
2], [n]) to be the diagram connecting the ith and (i + 1)th vertices on the top line with no

other quasi-simple links. An example of these diagrams are shown in Figure 4.

• •

• • • •

• • • •

• •

Figure 4: Diagrams for ε42 and δ4
2, respectively, in Hom([4], [2]).

Every diagram in the Temperley-Lieb category can be decomposed into certain genera-

tors, as described by the following theorem.

Theorem 2.3 ([9]). The algebra
⊕

m,n∈Z≥0
Hom([m], [n]) is generated as an algebra by all

εni and δni , where 1 ≤ i ≤ n− 1, with the following relations:

(i) εni · δni = −q − q−1, and

(ii) (id⊗ εni ) · (δni ⊗ id) = id = (εni ⊗ id) · (id⊗ δni ).

2.2 The Temperley-Lieb Algebra

In this section, we introduce the Temperley-Lieb Algebra, the object that is central to

our paper. Refer to an (n, n)-diagram as an n-diagram.

Definition 2.4 (Temperley-Lieb Algebra). Let the Temperley-Lieb algebra, denoted TLn,

be Hom([n], [n]), the vector space spanned by diagrams with n vertices on both the top and

bottom lines. Let tln denote the set of diagrams of TLn.

Let ei refer to the diagram with a simple link connecting the ith and (i + 1)th vertices,

counting from the left, on each line and with straight links everywhere else (for example, see

Figure 5).

As a corollary of Theorem 2.3, we can state the following Proposition, describing the

Temperley-Lieb algebra in terms of generators. Recall that β = −q − q−1.

4



• • • •

• • • •

Figure 5: The diagram e2 in TL4.

Proposition 2.5 ([10]). The algebra TLn is generated by {e1, . . . , en−1} defined by the fol-

lowing relations:

e2
i = β · ei, eiei±1ei = ei, and eiej = ejei for |i− j| ≥ 2.

2.3 The Spin Representation of the Temperley-Lieb Algebra

In this section, we discuss the spin representation (C2)⊗n, an important object in many

areas of mathematics and physics, and how the Temperley-Lieb algebra acts on it.

Let v+ denote (1, 0) ∈ C2 and v− denote (0, 1) ∈ C2. The 4-dimensional vector space

C2 ⊗ C2 has basis {v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−}.
Let ε : C2 ⊗ C2 → C be

v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ −q, v− ⊗ v+ 7→ 1, v− ⊗ v− 7→ 0

and let δ : C→ C2 ⊗ C2 be

1 7→ v+ ⊗ v− − q−1v− ⊗ v+.

Let εni : (C2)⊗n → (C2)⊗n−2 be (id)⊗i−1 ⊗ ε ⊗ (id)⊗n−i−1 and δni : (C2)⊗n−2 → (C2)⊗n be

id⊗i−1⊗ δ ⊗ id⊗n−i−1.

Since εni and δni generate the algebra
⊕

m,n≥0 Hom([m], [n]) and all the relations in Propo-

sition 2.5 are satisfied, we have an action of
⊕

m,n≥0 Hom([m], [n]) on
⊕

n≥0(C2)⊗n.

We can consider the case of m = n to obtain a representation of TLn.

Definition 2.6. The spin representation is the action of TLn = Hom([n], [n]) on (C2)⊗n.

The spin representation is the central object of our paper.

Example 2.7. We describe an example of how TL4 acts on (C2)⊗4. Given the first diagram

in Figure 6, we write it in terms of the generators of TL by decomposing it as shown in the

second and third diagrams. Explicitly, the first diagram decomposes into δ4
1δ

2
3ε

2
1ε

4
2.
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• • • •

• • • •

• • • •

• • • •

• • • •

• • • •
• •
• •

Figure 6: An example of how a TL4 diagram is sliced.

We label each tensor product with its original position for convenience purposes. The

action of the following diagram (Figure 6) is as follows:

C2
1 ⊗ C2

2 ⊗ C2
3 ⊗ C2

4 C2
1 ⊗ C2

4 C2
2 ⊗ C2

3 C C2
1 ⊗ C2

2 ⊗ C2
3 ⊗ C2

4
id⊗ε⊗id id⊗id ε δ⊗δ

.

2.4 A Diagrammatic Interpretation of the Spin Representation

Khovanov [6] introduced the possibility of a diagrammatic interpretation of the spin

representation. Chen [7] generalized his work, representing Lusztig’s dual canonical basis [8]

as diagrams in the Temperley-Lieb algebra.

Definition 2.8. Let (C2)⊗nk denote the subspace of (C2)⊗n generated by vectors of the form

van ⊗ · · · ⊗ va1 such that k of the ai are − and n− k of the ai are +.

Remark. As the spin representation parametrizes the positions of n electrons, each of which

has either spin-down or spin-up, the module (C2)⊗nk parametrizes the positions of n electrons

where k of them have spin-down and n− k have spin-up.

First, we define the notion of a diagrammatic basis for the induced representation that

will be used to view the spin representation in terms of the diagrams of tln.

Lemma 2.9 ([7]). For all 1 ≤ k ≤ n, IndTLn
TLk ⊗TLn−k

Ctriv is precisely generated by the

diagrams in which the only quasi-simple links on the bottom line connect k − i to k + 1 + i

for some i, which is the diagrammatic basis of the left hand side.

Definition 2.10. Let Cn
k denote the diagrammatic basis of IndTLn

TLk ⊗TLn−k
Ctriv.

The following proposition describes how the spin representation can be viewed through

diagrams of tln.

Proposition 2.11 ([7]). There is an isomorphism of TLn-modules:

IndTLn
TLk ⊗TLn−k

Ctriv
∼= (C2)⊗nk ,
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and the isomorphism identifies the diagrammatic basis of the left hand side to the dual canon-

ical basis of the right hand side.

Therefore, (C2)⊗nk is generated by the diagrams in Cn
k .

We can extend Proposition 2.11 to the entire spin representation to obtain the following,

giving a diagrammatic basis of the entire Temperley-Lieb algebra.

Corollary 2.12 ([7]). There is an isomorphism of TLn-modules⊕
0≤k≤n

IndTLn
TLk ⊗TLn−k

Ctriv
∼= (C2)⊗n

which identifies the diagrammatic basis of the left hand side to the dual canonical basis of

the right hand side.

With these results, we can work with (C2)⊗n in terms of the diagrams in tln.

2.5 Specht Modules

We now study the irreducible representations of (C2)⊗nk , called the Specht modules, which

are another important object in our work.

Definition 2.13. A diagram is monic when it does not have any simple links on the bottom

line. For 0 ≤ ` ≤ n such that ` ≡ n (mod 2) let wn` denote the set of monic diagrams with

n vertices on the top line and ` vertices on the bottom line.

Definition 2.14 (Specht modules). The Specht module W n
` is the TLn-module which is the

quotient of Hom([`], [n]) by the image of left multiplication by ε`−2
j s.

The following lemma gives an explicit description of the action of TLn on the Specht

Module.

Lemma 2.15. The Specht module W n
` has a basis consisting of the diagrams in wn` . A

diagram D ∈ tln sends D′ ∈ wn` to the concatenation DD′ if the (n, `)-diagram DD′ remains

monic, and to 0 otherwise.

Example 2.16. The composition of the two diagrams in Figure 7 is 0, as the monicity of

the diagram in w6
2 is not preserved.

The following Proposition can be obtained through results in [11].
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• •• • • •

• •

• •• • • •

• •• • • •

Figure 7: A diagram in the Specht Module W 6
2 (left) and a diagram in the Temperley-Lieb

algebra TL6 (right).

Proposition 2.17 ([11]). The TLn-representation (C2)⊗nk for k ≤ n/2 can be uniquely (up

to scalar multiplication) decomposed into a direct sum of Specht modules W n
n ⊕W n

n−2⊕ · · ·⊕
W n
n−2k.

Proof. There is a decomposition of (C2)⊗n as a TLn⊗Uq(sl2)-module as1

(C2)⊗n ∼=
⊕

0≤k≤n/2

W n
n−2k � (C2)⊗nn/2−k. (1)

Since Kv± = q±1v±, the q`-eigenspace of K in (1) gives that

(C2)⊗nn−2` =
⊕

0≤k≤|`|

W n
n−2k.

As both (C2)⊗nk and W n
i for all 0 ≤ i ≤ k where k ≡ n (mod 2) have a diagrammatic

interpretation, a natural question to ask is how the above isomorphism interacts with the

diagrammatic perspective. We investigate the images of the diagrams in wni , leading to an

explicit decomposition of the spin representation.

3 Computation of ϕnk for k = 0 and k = 1

In the previous section, we have defined an isomorphism ϕnk : W n
n ⊕W n

n−2⊕· · ·⊕W n
n−2k →

(C2)⊗nk . In this section, we describe ϕnk explicitly in terms of diagrams for k = 0 and k = 1,

laying the groundwork for an inductive computation for general k in Section 6. Recall that

wnk denotes the diagrammatic basis of W n
k , tln denotes the diagrammatic basis of TLn, and

Ck
n denotes the diagrammatic basis of (C2)⊗nk . This notation will be used throughout the

paper.

1where � denotes the box tensor product.
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Lemma 3.1. The image of the unique diagram in wnn under ϕn0 is equal to the identity

diagram in tln.

Proof. In both Wn and TLn, the action of the generators ei (see Figure 5) for all i send the

diagram described in the lemma to 0.

Recall that εni and δni (see Figure 4) are the generators of the Temperley-Lieb category.

Proposition 3.2. We can describe the image of ϕn1 as follows:

(i) the image of a diagram D ∈ wnn−2 is equal to Dεn−2
1 ; and

(ii) the image of the diagram idn ∈ wnn is equal to
∑n−1

i=0 [n − i]qDi, where Di = δni · εn1 for

1 ≤ i ≤ n− 1 and D0 is the identity diagram in tln.

Proof. First, statement (i) is true as the actions of ei for all i will be consistent across both

W n
n−2 and (C2)⊗n1 .

Now, we prove statement (ii). The action of ei on D0 will give D1 for i = 1 and 0 for

i 6= 1. For each Di for 1 ≤ i ≤ n− 1, we have that

ejDi =


βDi if j = i

Di if j = i± 1

0 otherwise.

Let ci denote the coefficient of Di in ϕn1 (idn). It is necessary that ejϕ
n
1 (idn) = ej

∑
i ciDi = 0

for all j. From the action of the ei on the diagrams described above, we obtain that cn−1 = 1,

cn−2 = −β = q + q−1, and cn−i = (q + q−1)cn−i+1 − cn−i+2. Induction allows us to conclude

that that cn−i = qi−q−i

q−q−1 = [i]q. Therefore, we obtain that ϕn1 (idn) =
∑n−1

i=0 [n− i]qDi.

This proposition will be used in Section 6 as a base case for our induction procedure.

4 Reduction Procedure For General k

In this section, we describe how to calculate the images under ϕnk of the diagrammatic

basis of W n
n−2, . . . , W n

n−2k by reducing the problem to computing the images of the dia-

grammatic basis of W n−2
n−2 , . . . , W n−2

n−2k under ϕn−2
k−1 . This procedure can be applied repeatedly,

allowing us to reduce the problem of computing ϕnk(W n
n−2i) to computing ϕn−2i

k−i (W n−2i
n−2i ). We
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construct this reduction by proving this reduction for the specific case of diagrams with links

in the top left corner in Proposition 4.7, and then extending it to all diagrams in Theorem 4.9.

The commutative diagram in Figure 8 summarizes the reduction procedure we describe

in this section.

W n−2i
n−2i (C2)⊗n−2i

k−i

W n
n−2i (C2)⊗nk

ϕn−2i
k−i

D 7→Πjδj ·D D 7→Πjδk·D·Πi
j=0ε

n−2i+2j
k

ϕn
k

Figure 8: How the computation of ϕnk(W n
n−2i) reduces to the computation of ϕn−2i

k−i (W n−2i
n−2i ).

Recall that (C2)⊗n−2
k−1

∼= W n−2
n−2 ⊕ · · · ⊕W n−2

n−2k and (C2)⊗nk
∼= W n

n ⊕W n
n−2 ⊕ · · · ⊕W n

n−2k.

The action of D ∈ tln−2 on C⊗nk is defined using the embedding TLn−2 ↪→ TLn which sends

ei to ei+2. An example of the embedding is in Figure 9.

• • •

• • •

7→

• • • • •

• • • • •

Figure 9: A basis element of TL3 embedded into TL5.

Definition 4.1. Define the map Φ: (C2)⊗n−2
k−1 → ((C2)⊗nk )e1=β by Φ: D 7→ δn1 · D · εnk for

diagrams D in Cn−2
k−1 .

The map Φ is a specific case of the rightmost map in Figure 8.

Lemma 4.2. The map Φ is an isomorphism of TLn−2-representations.

Proof. We can verify that Φ is well-defined and commutes with the action of TLn−2, so it is

a homomorphism.

Let S be the set of diagrams D in Cn
k that can be expressed in the form D = δn1 · D′,

where D′ is any diagram in Hom([n], [n− 2]) in TL (in other words, D contains a link in the

top left corner). Let R be the set of diagrams in the same set Cn
k that cannot be expressed

in this way (in other words, the diagrams in R do not have a link in the top left corner).

A vector v in ((C2)⊗nk )e1=β can be expressed as
∑

D∈S aDD +
∑

A∈R bAA, where the aD

and bA are coefficients in C2. As every individual component aDD has eigenvector e1 with
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eigenvalue β,
∑

A∈R bAA must also be e1-invariant with eigenvalue β. However, e1 sends any

diagram A ∈ R to a diagram in S, which implies that
∑

A∈R bAA = 0, so v is spanned by

diagrams in S.

We now show that Φ is surjective. Every diagram in S has e1 as a eigenvector with

eigenvalue β, so we conclude that ((C2)⊗nk )e1=β is generated by diagrams of the form δn1 ·D.

Furthermore, as such a diagram in IndTLn
TLk ⊗TLn−k

Ctriv must also have a link on the bottom

line connecting the kth and (k+ 1)th vertices, it can also be expressed in the form δn1 ·D · εnk .

Injectivity follows from construction, so Φ is an isomorphism.

Remark. The map Φ: D 7→ δn1 · D · εnk in Lemma 4.2 is adding a link to the top left and a

link on the bottom line between the kth and (k + 1)th vertices of D.

Example 4.3. The diagram on the left maps under Φ to the diagram in the right in Fig-

ure 10.

• • •

• • •

7→

• • • • •

• • • • •

Figure 10: An example of a map from a diagram in (C2)⊗3
2 to (C2)⊗5

2 under Φ.

Definition 4.4. For each 1 ≤ i ≤ n/2, define Φn−2i : W
n−2
n−2i → (W n

n−2i)
e1=β by

Φn−2i : D 7→ δn1 ·D.

This is a specific case of the leftmost map in Figure 8.

Lemma 4.5. The map Φn−2i is an isomorphism of TLn-modules for all i.

Proof. Using a method similar to the proof of Lemma 4.2, we can verify that Φn−2i is both

well-defined and intertwining with the TLn−2 action for all i, so it is a homomorphism.

Let S be the set of diagrams D in wnn−2i that can be expressed as δn1 ·D where D ∈ wn−2
n−2i

(so S is the set of diagrams that have a link in the top left corner). Let R be the set of

diagrams in wnn−2i that cannot be expressed this way. A vector v in (W n
n−2i)

e1=β can be

expressed as
∑

D∈S aDD +
∑

A∈R bAA. As every individual component aDD has e1 as an

eigenvector with eigenvalue β,
∑

A∈R bAA must also have β as the e1-eigenvalue. The action
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of e1 on any diagram in wnn−2i must map to either zero or a diagram in S, so it cannot

send A ∈ R to βA. This implies that
∑

A∈R bAA = 0, so v is spanned by diagrams in S.

Furthermore, every diagram in S has a e1-eigenvalue β, so we conclude that (W n
n−2i)

e1=β is

generated by diagrams that can be expressed in the form δn1 ·D.

The above implies that Φn−2i is surjective, and injectivity follows from construction, so

Φn−2i is an isomorphism.

Remark. The map Φn−2i : D 7→ δn1 ·D in Lemma 4.5 is adding a link to the top left corner

of D.

In addition to Lemma 4.2 and Lemma 4.5, we can use the following general result, which

follows from Schur’s Lemma.

Lemma 4.6 (Schur’s Lemma). Given irreducible representations A1, . . . , Ar and A′1, . . . , A
′
r

of TLn such that Ai � Aj and A′i � A′j when i 6= j and ϕi : Ai ∼= A′i is an isomorphism for

all i, if ϕ : A1 ⊕ · · · ⊕Ar ∼= A′1 ⊕ · · · ⊕A′r is an isomorphism, then ϕ|Ai
lands in A′i and is a

multiple of ϕi.

We can now prove the following proposition, which reduces the problem of computing

the images of diagrams with links on the top left corner in wnn−2i to computing the images

of diagrams in wn−2
n−2i. This proposition is generalized in Theorem 4.9.

Proposition 4.7. The image of the isomorphism Φ: (C2)⊗n−2
k−1 → ((C2)⊗nk )e1=β of each com-

ponent W n−2
n−2i of (C2)⊗n−2

k−1 falls in W n
n−2i. Furthermore, the restriction of Φ for each compo-

nent W n−2
n−2i is equal to the map Φn−2i.

Proof. Lemma 4.2 gives an isomorphism Φ: (C2)⊗n−2
k−1 → ((C2)⊗nk )e1=β and Lemma 4.5

give isomorphisms between irreducible representations Φn−2 : W n−2
n−2 → (W n

n−2)e1=β, . . . ,

Φn−2k : W n−2
n−2k → (W n

n−2k)
e1=β. Lemma 4.6 implies that the restriction Φ|Wn

n−2i
is precisely

Φn−2i.

From this inductive procedure, one can also compute the images of every diagram in

wnn−2, . . . , wnn−2k under ϕnk given the images of the diagrams in wn−2
n−2, . . . , wn−2

n−2k under ϕn−1
k−1 .

Lemma 4.8. Given any diagram δni · D in either a Specht module or the Temperley-Lieb

algebra, the action of ei+1 sends it to δni+1 ·D.

Proof. This lemma follows by the fact that ei+1δi = δi+1.

12



The following theorem is the main result of this section, allowing us to reduce the problem

of computing ϕnk(W n
n−2i) to computing ϕn−2i

k−i (W n−2i
n−2i ).

Theorem 4.9. Let D = δnjD
′, where D′ ∈ wn−2

n−2i, be a diagram in wnn−2i for some 1 ≤ i ≤ k.

Let ϕn−2
k−1(D′) =

∑
A∈tln−2

cAA. Then

ϕn−2
k (D) =

∑
A∈tln−2

cAδ
n
j · A · εnk .

Proof. Lemma 4.8 implies that given ϕnk(δji ·D) for any δji ·D ∈ (W n
n−2i)

ej=β, one can obtain an

element in (W n
n−2i)

ej+1=β by δnjD 7→ δnj+1D. Note that this operation gives an isomorphism of

vector spaces (W n
n−2i)

ej=β ∼= (W n
n−2i)

ej+1=β, so every element of (W n
n−2i)

ej+1=β can be obtained

this way.

As Proposition 4.7 gives the image of (W n
n−2i)

e1=β under ϕnk , we can compute the image

of (W n
n−2i)

ej=β under ϕnk for all 1 ≤ j ≤ n−1, yielding the explicit irreducible decomposition

of (C2)⊗nk .

With this theorem, we obtain that for i = 1, Figure 8 commutes. We can repeatedly

apply this theorem to obtain the reduction described in the diagram for general i.

Remark. In this section, we reduced the problem of computing the images of the diagrams

in wnn−2i with links in the top left corner, and we reduced the problem of computing the

images of the other diagrams of wnn−2i through applying actions of ej to the former case.

Alternatively, we could have also directly computed these using reduction, as (C2)n−2
k−1 is

isomorphic to ((C2)nk)ej=β as TLi−1⊗TLn−i−1-modules.

5 The Decomposition (C2)⊗n−1
k ⊕ (C2)⊗n−1

k−1
∼= (C2)⊗nk |TLn−1

The spin representation can be decomposed into a direct sum of “smaller” spin represen-

tations. In this section, we describe the isomorphism (C2)⊗n−1
k ⊕ (C2)⊗n−1

k−1
∼= (C2)⊗nk |TLn−1

explicitly, using it to give an inductive procedure to compute ϕnk(W n
n ) in the next section.

We use the following result from [12] in order to prove Proposition 5.2, which allows us to

decompose the spin representation into spin representations of a smaller number of electrons,

thus allowing us to describe an inductive procedure to calculate the image of the generator

of ϕnk(W n
n ) in Section 6.

Lemma 5.1 ([12]). There is an isomorphism of TLn−1-modules W n
k |TLn−1

∼= W n−1
k−1 ⊕W

n−1
k+1 .

13



Proposition 5.2. There is an isomorphism of TLn−1-modules (C2)⊗nk |TLn−1
∼= (C2)⊗n−1

k ⊕
(C2)⊗n−1

k−1 .

Proof. Proposition 2.17 states that (C2)⊗nk
∼= W n

n ⊕ · · · ⊕W n
n−2k. Restricting the action on

both sides to TLn−1, we obtain from Lemma 5.1 that (C2)⊗nk is isomorphic to

W n−1
n−1 ⊕W n−1

n+1 · · · ⊕W n−1
n−2k−1 ⊕W

n−1
n−2k+1 = W n−1

n−1 ⊕W n−1
n−4 ⊕W n−1

n−2 · · · ⊕W n−1
n−2k−1 ⊕W

n−1
n−2k+1

= (C2)⊗n−1
k ⊕ (C2)⊗n−1

k−1 .

We describe one such isomorphism explicitly.

Definition 5.3. We define the map Θn
k ⊕Ψn

k : (C2)⊗n−1
k ⊕ (C2)⊗n−1

k−1 → (C2)⊗nk |TLn−1 on each

component.

• Let Θn
k be defined by mapping a diagram D ∈ Cn−1

k to the diagram D with a link

added to the right.

• Define Ψn
k as mapping the identity diagram idn−1 to δnk ε

n
k + [2]qδ

n
k+1ε

n
k + · · · + [n −

k]qδ
n
n−1ε

n
k . Extend it to be compatible with the TLn−1-action.

In this section, we show that Θn
k ⊕ Ψn

k is an isomorphism. First, we show that it is a

homomorphism.

Proposition 5.4. The maps Θn
k and Ψn

k are well-defined homomorphisms.

Proof. Firstly, Θn
k is a homomorphism of TLn−1-modules. Indeed, adding a link at the end

does not affect any actions or relations.

We prove that the actions of e2, . . . , en−1 send Φn
k(idn−1) to 0. First, we consider ek. The

action annihilates all of δnk+2ε
n
k to δnn−1ε

n
k as it creates a link on the bottom line between the

(k + 2)th and (k + 3)th vertices. What remains is ek(δ
n
k ε
n
k + [2]qδ

n
k+1ε

n
k) = βek + [2]qek = 0.

Now we consider ei for i > k. The action annihilates everything except for [i − k]qδ
n
i−1ε

n
k +

[i − k + 1]qδ
n
i ε
n
k . Furthermore, ei([i − k]qδ

n
i−1ε

n
k + [i − k + 1]qδ

n
i ε
n
k + [i − k + 2]qδ

n
i+1ε

n
k) =

[i− k]qδ
n
i ε
n
k + [i− k + 1]qβδ

n
i ε
n
k + [i− k + 2]qδ

n
i ε
n
k = 0.

As (C2)⊗n−1
k

∼= IndTLn
TLk ⊗TLn−k

Ctriv, the universal property of induced representations

states that there are no further relations.

We compute the image of certain diagrams under Ψn
k , which will be used in Section 6.

Lemma 5.5. The map Ψn
k sends δn−1

i εn−1
k−1 to δni ε

n
k−1(δnk + [2]qδ

n
k+1 + · · ·+ [n− k]qδ

n
n−1)εnk .

14



Proof. To obtain the image of δn−1
k−1 ε

n−1
k−1 under Ψn

k , we apply ek−1 to idn−1 and compute its

image. The image will be δnk−1ε
n
k−1(δnk ε

n
k+[2]qδ

n
k+1ε

n
k+· · ·+[n−k]qδ

n
n−1ε

n
k) by Definition 5.3.

Finally, we prove the following result, which allows us to use induction to compute

ϕnk(W n
n ) in Section 6.

Theorem 5.6. The map Θn
k ⊕Ψn

k defines an isomorphism of TLn−1-modules.

Proof. Each of the diagrams in Cn−1
k maps to a unique diagram in Cn

k with a straight

link on the nth vertex. The last term the images of each of the diagrams in Cn−1
k−1 gives a

diagram δni ε
n
k−1δ

n
n−1ε

n
k that does not appear in the image of any other diagram under Θn

k⊕Ψn
k .

Therefore, each of the images are linearly independent.

6 Computation of ϕnk(W
n
n ) Using the Decomposition

Recall that Θn
k ⊕Ψn

k : (C2)⊗n−1
k ⊕ (C2)⊗n−1

k−1 → (C2)⊗nk |TLn−1 is an isomorphism by Theo-

rem 5.6.

We state the following proposition, which we use to inductively compute ϕnk(W n
n ).

Proposition 6.1. Given vectors xn−1
k ∈ ϕn−1

k (W n−1
n−1 ) in (C2)⊗n−1

k and xn−1
k−1 ∈ ϕ

n−1
k−1(W n−1

n−1 )

in (C2)⊗n−1
k−1 that are annihilated by the actions of e1, . . . , en−2, the one-dimensional space

ϕnk(W n
n ) is generated by the unique (up to scalar) vector in (C2)⊗nk that is annihilated by the

actions of all eis. This vector is the unique (up to scalar) linear combination of Θn
k(xn−1

k )

and Ψn
k(xn−1

k−1) that is also annihilated by en−1.

Proof. The image of the identity diagram idn in W n
n under the homomorphism ϕ, is the

unique vector (up to scalar) that is annihilated by the actions of all eis. This vector is in

the space V of vectors that are annihilated by the actions of ei for 1 ≤ i ≤ n − 2. Due

to the TLn−1-module isomorphism Θn
k ⊕Ψn

k , the subspace V is 2-dimensional, generated by

Θn
k(xn−1

k ) and Ψn
k(xn−1

k−1). Therefore, the vector in (C2)⊗nk that is annihilated by the actions

of all eis is a linear combination of Θn
k(xn−1

k ) and Ψn
k(xn−1

k−1).

We construct a sequence xni , in which each term is a linear combination of the images of

the two before, and each term is annihilated by the action of every generator.

Definition 6.2. Let xn0 = xnn = idn and define xnk inductively by [n−k]qx
n
k = [n]qΘ

n
k(xn−1

k )+

Ψn
k(xn−1

k−1).

15



We show that xnk is the unique vector that is annihilated by all of e1, . . . , en−1 in (C2)⊗nk .

Note that for k = 0, idn is annihilated by the action of every generator, so this statement

holds. In this section, we inductively prove that xnk defined this way is annihilated by the

action of all the generators, for general k.

6.1 The k = 1 Case

We first show that xn1 is annihilated by the action of all eis. To do so, we introduce the

following lemma.

Lemma 6.3. We have the relation [n]q[n− i− 1]q + [i]q = [n− 1]q[n− i]q.

Proof. We have the above is equal to

[n]q[n− i− 1]q + [i]q =
qn − q−n

q − q−1
· q

n−i−1 − qi+1−n

q − q−1
+
qi − q−i

q − q−1

=
q2n−i−1 − qi+1 − q−i−1 + qi+1−2n + qi+1 − q−i+1 − q−1+i + q−i−1

(q − q−1)2

=
q2n−i−1 + qi+1−2n − q−i+1 − q−1+i

(q − q−1)2

=
(qn−1 − q1−n)(qn−i − qi−n)

(q − q−1)2

= [n− 1]q[n− i]q.

With this, we can show that the definition of xn1 is consistent for the k = 1 case.

Proposition 6.4. The inductive computation of xn1 by [n−1]qx
n
1 = [n]qΘ

n
1 (xn−1

1 )+Ψn
1 (xn−1

0 )

yields that xn1 is annihilated by the action of all the generators.

Proof. We give a formula for xn1 by induction. In the base case, we have that Θ1
1(x1

1) = id1.

By the inductive hypothesis, we have

[n]qΘ
n
1 (xn−1

1 ) = [n]q

(
n−2∑
i=1

[n− i− 1]qδ
n
i ε
n
1 + [n− 1]q idn

)

and

Ψn
1 (xn−1

0 ) =
n−1∑
i=1

[i]qδ
n
i ε
n
1 .
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The sum of these two expressions is

[n]q[n− 1]q idn +[n− 1]qδ
n
i ε
n
1 +

n−2∑
i=1

([n]q[n− i− 1]q + [i]q)δ
n
i ε
n
1 .

= [n− 1]q

(
n−1∑
i=0

[n− i]qδni εn1 + [n]q idn

)
,

due to Lemma 6.3, so xn1 =
∑n−1

i=0 [n − i]qδ
n
i ε
n
1 + [n]q idn which Proposition 3.2 states is

annihilated by all the generators.

6.2 Inductive Computation for General k

In this section, we prove that xnk , as defined inductively by [n− k]qx
n
k = [n]qΘ

n
k(xn−1

k ) +

Ψn
k(xn−1

k−1), is annihilated by the actions of all the generators. The vectors Θn
k(xn−1

k ) and

Ψn
k(xn−1

k−1) are both annihilated by the actions of e1, . . . , en−2, so by Proposition 6.1, a lin-

ear combination of them must be annihilated by en−1. The action of en−1 is defined by

the action of εnn−1, so we consider this action for the sake of simplicity. Computing the

coefficients of εnk allows us to obtain the linear combination, so it is sufficient to com-

pute coeffεnk (εnn−1Θn
k(xn−1

k )) and coeffεnk (εnn−1Ψn
k(xn−1

k−1)) and show that the coefficient of εnk
of [n]qε

n
n−1Θn

k(xn−1
k ) + εnn−1Ψn

k(xn−1
k−1) is equal to 0.

We reduce the problem of computing coeffεnk (εnn−1Θn
k(xn−1

k )) and coeffεnk (εnn−1Ψn
k(xn−1

k−1)) to

computing the coefficient of idn−i in xn−ij in Proposition 6.5, Proposition 6.6, and Lemma 6.7.

We then compute the coefficient of idn−i in xn−ij in Lemma 6.8, leading to Theorem 6.9, an

inductive formula for computing ϕnk(W n
n ).

First, we reduce the problem of computing coeffεnk (εnn−1Θn
k(xn−1

k )).

Proposition 6.5. We have that coeffεnk (εn−1Θn
k(xn−1

k )) = coeff idn−2(x
n−2
k−1).

Proof. By the inductive hypothesis, [n−k− 1]qx
n−1
k = [n− 1]qΘ

n−1
k (xn−2

k ) + Ψn−1
k (xn−2

k−1). We

must compute the coefficient of εnk of 1
[n−k−1]q

(εnn−1Θn
kΘn−1

k (xn−2
k )+εn−1Θn

kΨn−1
k (xn−2

k−1)). Since

Θj
i is a map adding a straight link to the right, Θn

kΘn−1
k (xn−2

k ) is a diagram with a straight

link on both the (n − 1)th and nth vertices, so the action of εn−1 sends it to 0. Therefore,

we only need to compute the coefficient of εnk in 1
[n−k−1]q

εn−1Θn
kΨn−1

k (xn−2
k−1).

Note that εn−1(D) is zero if D has two straight links to its right. As the action of Θn
k

adds a straight link to the right of a diagram, Ψn−1
k (xn−2

k−1) must have a simple link between

the (n− 2)th and (n− 1)th vertices on the top row.
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We show that Ψn−1
k (D) for D ∈ Cn−2

k−1 has εnk as a term if and only if D is the identity

diagram on n− 2 vertices. Note that by Theorem 5.6, we obtain that

Ψn−1
k (D) = Dδn−1

k εn−1
k + [2]qDδ

n−1
k+1 ε

n−1
k + · · ·+ [n− k − 1]qDδ

n−1
n−2ε

n−1
k .

If D is a nontrivial diagram in Cn−2
k−1 , we only need to consider Dδn−1

n−2ε
n−1
k as it is the only

possibility where a simple link connecting the (n − 2)th and (n − 1)th vertices on the top

line appears. Furthermore, D must also have a simple link between the (k − 1)th and kth

vertices. In the edge case where k ≥ n − 2, there will no longer be a link connecting the

(n− 1)th and (n− 2)th vertices in Dδn−1
n−2ε

n−1
k , so it will be sent to 0. If k < n− 2, the link

connecting the (k − 1)th and kth vertices in D will create a second quasi-simple link on the

bottom line in Dδn−1
n−2ε

n−1
k . Therefore, in this case, coeffεk(Ψn−1

k (D)) = 0.

If D = idn−2, recall that by Definition 5.3, Ψn−1
k (D) = δn−1

k εn−1
k + [2]qδ

n−1
k+1 ε

n−1
k + · · · +

[n−k−1]qδ
n−1
n−2ε

n−1
k . In this case, as εnn−1δ

n
i ε
n
k = εnk when k ≤ i ≤ n−2 implies that i = n−2,

we obtain that coeffεnk (εnn−1Θn
kΨn−1

k (idn−2)) = [n− k − 1]q. Therefore,

coeffεk(εn−1Θn
k(xn−1

k )) =
1

[n− k − 1]q
coeffεnk (εnn−1Θn

kΨn−1
k (xn−2

k−1)) = coeff idn−2(x
n−2
k−1).

Similarly to the above proposition, in the following proposition, we reduce the problem

of computing coeffεnk (εnn−1Ψn
k(xn−1

k−1)).

Proposition 6.6. We have the recurrence relation

coeffεnk (εnn−1Ψn
k(xn−1

k−1)) = −[n− k + 1]coeff idn−1(x
n−1
k−1) + coeffδn−1

n−2ε
n−1
k−1

(xn−1
k−1).

Proof. We show that if Ψn
k(D) has a term that is εnk , D ∈ Cn−1

k−1 must be either idn−1 or

δn−1
n−2ε

n−1
k−1 . Recall that by Theorem 5.6, we obtain that Ψn

k(D) = Dδnk ε
n
k + [2]qDδ

n
k+1ε

n
k + · · ·+

[n− k]qDδ
n
n−1ε

n−1
k .

In the case where D = idn−1, only εnn−1δ
n
n−2ε

n
k and εnn−1δ

n
n−1ε

n
k create a coefficient of εnk .

The coefficient of εnk in Ψn
k(idn−1) is [n− k− 1]− [2][n− k] = −[n− k+ 1]. In the case where

D is not the identity, for the coefficient of εnk to be nonzero, D must be equal to δn−1
n−2ε

n−1
k−1 as

otherwise there will be a simple link on the top line. If this is the case, the only term where

a coefficient of εnk appears is δn−1
n−2ε

n−1
k−1δ

n
k ε
n
k . In this case, the coefficient of εnk in Ψn

k(δn−1
n−2ε

n−1
k−1)

is 1. Combining this information, we obtain this proposition.

We further reduce the original problem, proving that computing the coefficient of the
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identity diagram is sufficient to compute coeffδn−1
n−2ε

n−1
k−1

(xn−1
k−1).

Lemma 6.7. We have the relation coeffδn−1
n−2ε

n−1
k−1

(xn−1
k−1) = coeff idn−2(x

n−2
k−2).

Proof. As [n − 1 − k]qx
n−1
k−1 = [n − 1]qΘ

n−1
k−1(xn−2

k−1) + Ψn−1
k−1(xn−2

k−2) and each component of

Θn−1
k−1(xn−2

k−1) has a rightmost straight link as Θn−1
k−1 is a map that adds a straight link to the

right, we obtain that coeffδn−1
n−2ε

n−1
k−1

(xn−1
k−1) = coeffδn−1

n−2ε
n−1
k−1

(Ψn−1
k−1(xn−2

k−2)). Similarly to the proof

of Proposition 6.5, Ψn−1
k−1(D) has a term of δn−1

n−2ε
n−1
k−1 if and only if D = idn−2. Therefore,

coeffδn−1
n−2ε

n−1
k−1

(xn−1
k−1) = [n− k]qcoeff idn−2(x

n−2
k−2).

Define [a]q! = [a]q[a− 1]q . . . [1]q for integer a. Furthermore, let
[
n
k

]
q

= [n]q !

[k]q ![n−k]q !
.

We can compute the coefficient of the identity diagram inductively by using the recurrence

found in Lemma 6.7.

Lemma 6.8. We obtain the formula coeff idn−1(x
n−1
k−1) =

[
n−1
k−1

]
q
.

Proof. Since xn−1
k−1 = [n−1]q

[n−k]q
Θn−1
k−1(xn−2

k−1) + 1
[n−k]!

Ψn−1
k−1(xn−2

k−2) by the inductive hypothesis and

every term in Ψn−1
k−1(xn−2

k−2) is nontrivial, we conclude that

coeff idn−1(x
n−1
k−1) =

[n− 1]q
[n− k]q

coeff idn−1(Θ
n−1
k−1(xn−2

k−1)).

Repeating this process, we obtain that

coeff idn−1(x
n−1
k−1) =

[n− 1]q
[n− k]q

. . .
[k]q
[1]q

=

[
n− 1

k − 1

]
q

.

Combining all the results in this section, we can prove the following theorem, one of the

main results of our paper.

Theorem 6.9. The vector xnk in (C2)⊗nk , defined by the inductive formula [n − k]qx
n
k =

[n]qΘ
n
k(xn−1

k ) + Ψn
k(xn−1

k−1), is annihilated by the actions of all eis.

Proof. We must show that the action of εnn−1 on [n]qΘ
n
k(xn−1

k ) + Ψn
k(xn−1

k−1) is equal to 0. By

Proposition 6.1, this is equivalent to proving that the coefficient of εnk of [n]qε
n
n−1Θn

k(xn−1
k ) +

εnn−1Ψn
k(xn−1

k−1) is equal to 0.
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By Proposition 6.5, Proposition 6.6, Lemma 6.7, and Lemma 6.8, we have that

coeffεnk (εnn−1Ψn
k(xn−1

k−1))

coeffεnk (εnn−1Θn
k(xn−1

k ))
=
−[n− k + 1]qcoeff idn−1(x

n−1
k−1) + coeffδn−1

n−2ε
n−1
k−1

(xn−1
k−1)

coeff idn−2(x
n−2
k−1)

=
−[n− k + 1]q

[
n−1
k−1

]
q

+
[
n−2
k−2

]
q[

n−2
k−1

]
q

=
−[n− k + 1]q[n− 1]q + [k − 1]q

[n− k]q

= −[n]q.

This implies that [n]qΘ
n
k(xn−1

k ) + Ψn
k(xn−1

k−1) is a vector that is annihilated by all generators

in (C2)⊗nk , proving the theorem.

Theorem 6.9 gives an inductive procedure for the computation of ϕnk(W n
n ), while the

results in Section 4, specifically Theorem 4.9 allow us to reduce the computation of ϕnk(W n
n−2i)

to the computation of ϕn−2i
k (W n−2i

n−2i ). These two cases cover all of W n
n ⊕· · ·⊕W n

n−2k, allowing

us to explicitly compute the irreducible decomposition of the spin representation into Specht

modules.

Example 6.10. We explicitly compute x4
2. We have that [2]qx

4
2 = [4]Θ4

2(x3
2) + Ψ4

2(x3
1). By

Proposition 3.2, Θ4
2(x3

2) = [1]qδ
4
1ε

4
2 + [2]qδ

4
2ε

4
2 + [3]q id4 and x3

1 = [1]qδ
3
2ε

3
1 + [2]qδ

3
1ε

3
1 + [3]q id3.

Therefore,

Ψ4
2(x3

1) = [1]q(δ
4
2ε

4
2 + [2]qδ

4
2δ

2
2ε

2
2ε

4
2) + [2]q(δ

4
1ε

4
2 + δ4

1δ
4
3ε

2
2ε

4
2) + [3]q(δ

4
2ε

4
2 + [2]qδ

4
3ε

4
2).

From these, we obtain that

[2]qx
4
2 =[4]q([1]qδ

4
1ε

4
2 + [2]qδ

4
2ε

4
2 + [3]q id4)

+ [1]q(δ
4
2ε

4
2 + [2]qδ

4
2δ

2
2ε

2
2ε

4
2) + [2]q(δ

4
1ε

4
2 + δ4

1δ
4
3ε

2
2ε

4
2) + [3]q(δ

4
2ε

4
2 + [2]qδ

4
3ε

4
2)

=[4]q[3]q id4 +([4]q + [2]q)δ
4
1ε

4
2 + ([4]q[2]q + 1 + [3]q)δ

4
2ε

4
2

+ [3]q[2]qδ
4
3ε

4
2 + [2]qδ

4
2δ

2
2ε

2
2ε

4
2 + [2]qδ

4
1δ

4
3ε

2
2ε

4
2.

Therefore,

x4
2 = ([5]q + 1) id4 +[3]qδ

4
1ε

4
2 + ([4]q + [2]q)δ

4
2ε

4
2 + [3]qδ

4
3ε

4
2 + δ4

2δ
2
2ε

2
2ε

4
2 + δ4

1δ
4
3ε

2
2ε

4
2.
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