
REPRESENTATION-THEORETIC BACKGROUND

YUTA NAKAYAMA

Abstract. We briefly review combinatorics and algebraic representation of reductive groups:
root systems, Weyl groups and (extended) affine Weyl groups, weight spaces, and classification of
irreducible representations in terms of highest weights. We define the Langlands dual group. We
review p-adic groups and their (smooth) representations, including: Hecke algebras attached to
compact open subgroups, relation between representations and Hecke modules, classical Satake
isomorphism and its proof (sketch). If time permits, we discuss the unramified local Langlands
correspondence.
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Part 1. Algebraic groups and their algebraic representations

We follow [Hum75].

1. Algebraic groups

Throughout the talk, let k be a field. Let G be a connected split reductive group over k. We do
not review what that means. We fix a split maximal torus T ⊆ G.
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Example 1.1. A typical example is G = GLn. In this case,

T =



t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tn

 ∈ G


satisfies the definition. Note GL1 = Gm.
1.1. Weyl groups. The Weyl group W of G with respect to T is defined as

W := NG(T )/T.

This is a finite constant group scheme over k.
Example 1.2. If G = GLn and T is as above, then W is isomorphic to the symmetric group Sn.
The isomorphism is given by associating a permutation σ ∈ Sn with the class of

0 0 · · · 1 0 · · · 0
1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 1 · · · 0


where the first column has 1 at the σ(1)-th row, the second column has 1 at the σ(2)-th row, and
so on.

The set of Borel subgroups of G containing T is acted on by W simply transitively.
Example 1.3. If G = GLn and T is as above, then the set of Borel subgroups of G containing T is
identified with the set of complete flags of kn that are stable under the action of T . Especially, the
set of regular upper triangular matrices containing T is a Borel subgroup. Also, the set of regular
lower triangular matrices containing T is another Borel subgroup.

When G = SLn, and T is the set of diagonal matrices in SLn, then the Borel subgroups containing
T are the intersections of the above Borel subgroups with SLn.
1.2. Root systems. Set g, t to be the Lie algebras of G and T . Define

X∗(T ) := Hom(T,Gm), X∗(T ) := Hom(Gm, T ).

The adjoint action of T on g decomposes g into weight spaces:

g = t⊕
⊕

0 6=α∈X∗(T )

gα,

where
gα := {v ∈ g | Ad(t)(v) = α(t)v, ∀t ∈ T}.

Let Φ(G,T ) be the set of 0 6= α ∈ X∗(T ) such that gα 6= 0. It receives the action of W .
Example 1.4. If G = GLn and T is as above, then

Φ(G,T ) = {ei − ej | 1 5 i, j 5 n, i 6= j},
where ei ∈ X∗(T ) is the standard basis. The action of W ' Sn on Φ(G,T ) is given by

σ(ei − ej) = eσ(i) − eσ(j).

The same description holds when G = SLn and T is the set of diagonal matrices in SLn.
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Proposition 1.5. If α ∈ Φ(G,T ), then dim gα = 1.

Definition 1.6. An element α ∈ Φ(G,T ) is called a root. Fix a Borel subgroup B containing T .
A root α is called positive (with respect to B) if gα ⊆ Lie(B). Let Φ+(G,T ) be the set of positive
roots. Let ∆(G,T ) ⊆ Φ+(G,T ) be the set of simple roots, i.e., the positive roots that cannot be
written as a sum of two or more positive roots.

Proposition 1.7. (1) We have Φ(G,T ) = Φ+(G,T ) t (−Φ+(G,T )).
(2) Every positive root is written as a sum of simple roots.
(3) The set of simple roots is a basis of the Q-vector space X∗(T )⊗Z Q.

Definition 1.8. A reduced root datum is a tuple (X∗,Φ, X∗,Φ
∨,Φ → Φ∨, 〈∗, ∗〉 : X∗ ×X∗ → Z)

consisting of
• free abelian groups X∗, X∗ of finite rank,
• a perfect pairing 〈∗, ∗〉 : X∗ ×X∗ → Z,
• finite subsets Φ ⊆ X∗ and Φ∨ ⊆ X∗ with a bijection Φ → Φ∨, α 7→ α∨,

that satisfy the following conditions.
(1) For every α ∈ Φ, we have 〈α, α∨〉 = 2.
(2) For every α ∈ Φ, the reflection sα : X

∗ → X∗ defined by

sα(β) = β − 〈β, α∨〉α

preserves Φ.
(3) For every α ∈ Φ, the reflection sα∨ : X∗ → X∗ defined by

sα∨(µ) = µ− 〈α, µ〉α∨

preserves Φ∨.
(4) For each α ∈ Φ, we have Qα ∩X∗ = {±α} ⊂ X∗.

Proposition 1.9. Let (X∗,Φ, X∗,Φ
∨, . . . ) be a reduced root datum. Then for any µ ∈ Φ∨, we have

Qµ ∩X∗ = {±µ} ⊂ X∗.

Corollary 1.10. Let (X∗,Φ, X∗,Φ
∨, . . . ) be a reduced root datum. Then (X∗,Φ

∨, X∗,Φ, . . . ) is
also a reduced root datum.

Theorem 1.11. (1) Let G,T as before. Then there exist a unique bijection Φ∨(G,T ) →
Φ∨(G,T ) ⊂ X∗(T ) that makes (X∗(T ),Φ(G,T ), X∗(T ),Φ

∨(G,T ), . . . ) a reduced root da-
tum.

(2) The isomorphism classes of the pair of a connected split reductive group over k and its split
maximal torus are in bijection with the isomorphism classes of reduced root data.

All of the reduced root datum corresponding to (G,T ) receives the action of W .

Example 1.12. Let G = SL2. Identify its diagonal torus T with Gm by(
t 0
0 t−1

)
7→ t.

Then Φ(G,T ) = {±2} ⊂ Z = Hom(T,Gm). We have 2∨ = 1 ∈ Z = Hom(Gm, T ).

Definition 1.13. Let G,T as before. We define the split reductive group Ĝ over C and its split
maximal torus T̂ so that they correspond to (X∗(T ),Φ

∨(G,T ), X∗(T ),Φ(G,T ), . . . ).
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1.3. Extended affine Weyl groups. We follow [WAR, Lecture 1]. The extended affine Weyl
group of G with respect to T is defined as W nX∗(T ). It acts on X∗(T ) by

(w, µ) · µ′ = w(µ′ + µ).

2. The highest weight theory

Take a finite dimensional vector space V over k. Let G → GL(V ) be an algebraic representation.
As in the case of T acting on g, we have

V =
⊕

α∈X∗(T )

Vα,

where
Vα := {v ∈ V | t · v = α(t)v, ∀t ∈ T}.

An element α ∈ X∗(T ) with Vα 6= 0 is called a weight of the representation.
Fix a Borel subgroup B containing T .

Definition 2.1. A character α ∈ X∗(T ) is called dominant (with respect to B) if α − w(α) ∈
N∆(G,T ) for all w in the Weyl group.

Theorem 2.2. (1) Let V be an algebraic representation of G. There exists a unique weight
αV ∈ X∗(T ) such that for any weight β of V , we have αV − β ∈ N∆(G,T ). We have
dimVαV

= 1.
(2) The isomorphism classes of irreducible algebraic representations of G are in bijection with

the set of dominant characters of T by V 7→ αV .

The character αV is called the highest weight of V .

Example 2.3. Let G = SL2. Identify the diagonal torus T with Gm as before. Let B be the Borel
subgroup of the upper triangular matrices. Then a character α ∈ X∗(T ) = Z is dominant if and
only if α = 0. Assume that the characteristic of k is 0. The irreducible algebraic representations of
G corresponding to n ∈ N is Symn std, where std: G → GL2 is the standard inclusion. In positive
characteristic, the corresponding irreducible representation is the subrepresentation of the same
construction.

Part 2. p-adic groups and their representations

We follow [Car79].

3. p-adic groups

We reuse the notation in Part 1. Let k = F be a non-archimedean local field, i.e., a finite
extension of Qp or Fp((t)). Let OF be its ring of integers, $ a uniformizer, and Fq = OF /($) its
residue field. Let vF : F � Z be the valuation. Set | ∗ | := q−vF (∗) to be the absolute value on F .

Let H be a locally profinite group. Namely, H is a totally disconnected locally compact Hausdorff
group, e.g., G(F ). Equivaletly, H is a Hausdorff topological group, and has a basis of neighborhoods
of the identity consisting of compact open subgroups.

3.1. Smooth representations. Let V be a complex vector space. A representation (π, V ) of H
is called smooth if for any v ∈ V , there exists an open subgroup K ⊆ H such that π(k)(v) = v for
all k ∈ K. As in the case of locally compact topological groups or Lie groups, there are notions of
induced representations, compact inductions, Frobenius reciprocity, Schur’s lemma, and so on.
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3.2. Hecke algebras. Fix a left Haar measure µ on H. Let K ⊆ H be a compact open subgroup.
The Hecke algebra H(H,K) is defined as the set of compactly supported K-biinvariant complex-
valued functions on H. It becomes a ring by the convolution product

(f ∗ g)(x) =
∫
H

f(h′)g(h′−1x)dµ(h′) =

∫
H

f(xh′)g(h′−1)dµ(h′), ∀f, g ∈ H(H,K), x ∈ H,

with the unit element 1K/µ(K). Let
H(H) := lim−→

K⊆H

H(H,K),

and call it the Hecke algebra of H. This equals the set of compactly supported locally constant
complex-valued functions on H. The convolution product extends to H(H).

Example 3.1. Let H = GLn(F ) and K = GLn(OF ). The theory of invariant factors tells us that
K\H/K is in bijection with the set of non-increasing sequences of integers (a1, a2, . . . , an) by

(a1, a2, . . . , an) 7→ K


$a1 0 · · · 0
0 $a2 · · · 0
...

...
. . .

...
0 0 · · · $an

K.

Let (π, V ) be a smooth representation of H. Then H(H) acts on V by

π(f)v :=

∫
H

f(h)π(h)(v)dµ(h), ∀f ∈ H(H), v ∈ V.

For a compact open subgroup K ⊆ H, the action of H(H,K) preserves V K := {v ∈ V | π(k)(v) =
v, ∀k ∈ K}.

Proposition 3.2. (1) The category of smooth representations of H is equivalent to the category
of H(H)-modules M such that H(H)M = M .

(2) Let (π, V ) be a nonzero smooth representation of H. Then V is irreducible if and only if
V K is eigher 0 or a simple H(H,K)-module for any compact open subgroup K ⊆ H.

(3) Let K ⊆ H be a compact open subgroup. Then the functor V 7→ V K from the category of
smooth representations of H to the category of H(H,K)-modules is exact. The functor gives
a bijection between the isomorphism classes of irreducible smooth representations (π, V ) of
H with V K 6= 0 and the isomorphism classes of simple H(H,K)-modules.

4. Satake isomorphism

Let G be a split connected reductive group over F . Our G extends to a split connected reductive
group scheme over OF (also denoted by G). Let K = G(OF ), which is a maximal compact subgroup
of H := G(F ). The spherical Hecke algebra of H is defined as H(H,K). The goal here is to describe
the structure of H(H,K) as well as the corresponding representation theory.

Definition 4.1. A smooth representation (π, V ) of H is called unramified if V K 6= 0.

Take T , a split maximal torus in G. Fix a Borel subgroup B containing T . Let N be the maximal
unipotent subgroup of B.

Example 4.2. Let G = GLn. Suppose that B is the Borel subgroup of upper triangular matrices.
Then N is the subgroup of upper triangular matrices with 1’s on the diagonal.
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Normalize the left Haar measures on Γ ∈ {H,T (F ), N(F ),K} so that Γ∩K has volume 1. Define
ordT : T (F ) → X∗(T ) by carrying t ∈ T (F ) to the element of X∗(T ) = Hom(X∗(T ),Z) that sends
α ∈ X∗(T ) to vF (α(t)) ∈ Z. It is surjective with kernel T (F ) ∩K. It induces an isomorphism

H(T (F ), T (F ) ∩K)
∼−→ C[X∗(T )].

Define the Satake transform H(H,K) → H(T (F ), T (F ) ∩K) by carrying f ∈ H(H,K) to

Sf : t 7→ δ(t)1/2
∫
N(F )

f(tn)dn = δ(t)−1/2

∫
N(F )

f(nt)dn, ∀t ∈ T (F ),

where δ(t) := |det(Ad(t)|LieN )|.

Theorem 4.3. The Satake transform induces an isomorphism
H(H,K)

∼−→ C[X∗(T )]
W

of C-algebras, where the action of W on C[X∗(T )] is induced by the action of W on X∗(T ).

Corollary 4.4. The ring H(H,K) is commutative. Its simple modules are one-dimensinal.

Example 4.5. Let G = GL2. Then we have
H(G(F ), G(OF )) ' C[X∗(T )]

S2 ' C[e1 + e2, (e1e2)
±1],

where ei is the standard basis of X∗(T ).
On the other hand, we have seen that G(OF )\G(F )/G(OF ) is in bijection with the set of non-

increasing pairs of integers (a1, a2). Let 1a1,a2
be the characteristic function of the double coset

corresponding to (a1, a2). Then {1a1,a2
| a1 = a2} is a basis of H(G(F ), G(OF )).

We compute S11,0 and S11,1. For the first one, we have

S11,0(diag(t1, t2)) = δ(diag(t1, t2))
−1/2

∫
N(F )

11,0

((
1 x
0 1

)(
t1 0
0 t2

))
dx

=

∣∣∣∣ t1t2
∣∣∣∣−1/2 ∫

N(F )

11,0

((
t1 t2x
0 t2

))
dx,

where
diag(t1, t2) :=

(
t1 0
0 t2

)
.

The matrix in the integrand of the most right side belongs to the double coset corresponding to (1, 0)
if and only if vF (t1t2) = 1, (t1, t2x, t2) = OF . This happens exactly when either (vF (t1), vF (t2)) =
(1, 0) and x ∈ OF , or (vF (t1), vF (t2)) = (0, 1) and x ∈ $−1O×

F . Thus

S11,0(diag(t1, t2)) =(q−1)−1/2 · 1 · 1diag($,1)(T (F )∩K)(diag(t1, t2))

+ q−1/2 · q · 1diag(1,$)(T (F )∩K)(diag(t1, t2))

=q1/2(e1 + e2).

We move on to S11,1. The matrix (
t1 t2x
0 t2

)
belongs to the double coset corresponding to (1, 1) if and only if vF (t1t2) = 2, (t1, t2x, t2) = $OF .
This is equivalent to vF (t1) = vF (t2) = 1 and x ∈ OF . Therefore, as in the case of S11,0, we have

S11,1(diag(t1, t2)) = 1−1/2 · 1 · 1diag($,$)(T (F )∩K)(diag(t1, t2)) = e1e2.
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Definition 4.6. Any irreducible unramified smooth representation of H corresponds to a C-algebra
homomorphism C[X∗(T )]

W = H(H,K) → C, namely a point of T̂ (C)/W , where as before T̂ =
Hom(X∗(T ),C×) = X∗(T ) ⊗Z C× is the complex torus dual to T . Call this point the Satake
parameter of the representation.

The Satake parameter can also be thought of as a semisimple element of Ĝ(C) considered up to
conjugacy. This is the content of the unramified local Langlands correspondence.

Proof. We sketch the construction of the inverse of the Satake isomorphism. Take χ ∈ T̂ (C)/W . By
lifting it to an elememt of T̂ (C), we obtain a character χ : B(F ) → T (F )

ordT−−−→ X∗(T )
χ−→ C× and a

C-algebra homomorphism χ : C[X∗(T )] → C. We also have the character δ : B(F ) → T (F )
δ−→ qZ.

Consider the normalized induced representation IndHB(F ) δ
1/2χ, the set of locally constant functions

φ : H → C such that
φ(bh) = δ1/2(b)χ(b)φ(h), ∀b ∈ B(F ), h ∈ H.

The space (IndHB(F ) δ
1/2χ)K is one-dimensional because H = B(F )K. Take a nonzero vector φ in

it. Also take f ∈ H(H,K). We compute π(f)φ.

π(f)φ(1) =

∫
H

f(h)φ(h)dµ(h)

=

∫
T (F )

∫
N(F )

∫
K

f(tnk)φ(tnk)dµ(k)dµ(n)dµ(t)

=

∫
T (F )

∫
N(F )

f(tn)φ(tn)dµ(n)dµ(t)

= φ(1)

∫
T (F )

δ1/2(t)χ(t)

∫
N(F )

f(tn)dµ(n)dµ(t)

= φ(1)

∫
T (F )

χ(t)Sf(t)dµ(t)

= φ(1)χ(Sf).

The induction has the finite length, so it has a unique unramified irreducible subquotient corre-
sponding to χ by the above computation. �
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