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Abstract

In this paper, we will determine and characterize knot invariants related to coloring in
RP3 and RP2 × (0, 1). In S3, there exist notions of colorings related to coloring the regions
and strands, and we extend those to RP3 and RP2 × (0, 1). In RP2 × (0, 1), we can establish
an involutive function that determines the colors of antipodal points and attach it to the
structure of a quandle. We attach such a function to the Joyce quandle, giving us a knot
invariant that allows us to distinguish between two links. However, such a function does not
work as well in RP3, so we instead establish a knot invariant from coloring regions of the
projections of certain links, based on the Dehn presentation of the fundamental group of the
knot complement. We establish a similar invariant for all links in RP2 × (0, 1).

Summary

In this paper, we study knots as abstract mathematical objects on projective spaces. In
particular, we will study knots that live in a sphere where diametrically opposite points are
identified with, or“glued to” each other. We will also study knots that live in a cylinder where
diametrically opposite points of the cross-sectional circles are identified with each other. We
aim to distinguish between knots in these spaces by finding and characterizing methods of
coloring these knots under a set of restraints, so that the number of colorings satisfying our
restraints always stays the same no matter how the knot is deformed. This will tell us that
any two knots with a different number of colorings must be different from each other. In
one of the spaces, we found a way to color the arcs of the projection—the image seen when
viewed from above—of the knot. In both spaces, we found a way to color the regions formed
by the projection of the knot such that the number of colorings is always the same no matter
how the knot is deformed.



1 Introduction

In the late nineteenth century, scientists such as Helmholtz, Tait, and Thomson believed

that the chemical elements were made of knots, which are closed loops in space, and links,

which are a disjoint union of knots, in a material they called “ether.” This motivated the

tabulation of knots, because they believed that they were making a table of the elements [1].

Although this theory was disproved, mathematicians continued to be interested in tabulating

and identifying knots, due to their intrinsic interest. In particular, they wanted to be able

to distinguish knots from each other.

Knots in R3 (which are equivalent to knots in S3) can be visualized diagramatically

by a projection into R2, where over-crossings and under-crossings are distinguished from

one another. This results in an image of a knot that is comprised of arcs. In 1926, Reide-

meister established the three Reidemeister moves on these knot diagrams, which consist of

twisting an arc, pulling one arc over or under another arc, or pulling an arc over or under a

crossing. Furthermore, he proved that when such moves are combined with planar isotopies—

deformations of the planar projection of the knot—they can transform any projection of a

knot into another projection of the same knot [2].

These moves motivate the quandle, a system for coloring arcs of a projection of the knot

such that the number of colorings is a knot invariant. The structure of the quandle follows

axioms that respect the Reidemeister moves so that any Reidemeister move will not change

the number of colorings of a knot under a quandle. For example, the Fox n-coloring colors

arcs with elements of Z/nZ such that at each crossing, the sum of the colors assigned to the

arcs on both sides of the under-crossing is equal to two times the color of the over-crossing, as

shown in Figure 1. Other types of coloring-based knot invariants include the Dehn coloring,

which colors regions of the knot projection, and the Alexander-Briggs coloring, which colors

crossings of the knot projection [3, 4]. In 1990, Drobotukhina began studying knots in RP3,

establishing two slide moves for those knots in addition to the three Reidemeister moves,

and found an analogue to the Jones polynomial for links in RP3 [5].

In this paper, we characterize knot invariants related to quandles in RP2 × (0, 1) by

extending the quandle to contain axioms that correspond to the slide moves as well, and find

an example of a quandle that helps distinguish between two links in RP2 × (0, 1) that have

the same 2-covering. We also determine a region-based coloring invariant for links in RP3.

We begin in Section 2 by establishing the preliminary ideas and definitions needed to

study knots in projective space. In Section 3, we introduce a structure that builds off of a

quandle to help distinguish knots in RP2 × (0, 1). In particular, in Theorem 3.12, we show
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Figure 1: Rule for Fox n-coloring. Graphic created by the student researcher based on [3]
using Ibis Paint X, 2025.

that for any quandle Q and involution φ such that φ(a ∗ b) = φ(a) ∗ φ(b), the number of

(Q,φ)-colorings of a link in RP2 × (0, 1) is an oriented link invariant. We also extend the

notion of the fundamental group of Fox colorings to a Z[t]/(t2−1)-module for such colorings.

However, the structure of RP3 forces any quandle behind a similar system of coloring in RP3

to be trivial. Thus, in Section 4, we determine a way to color regions of the diagram of a knot

in RP3 if its number of boundary points is divisible by 4 in Theorem 4.6, and also introduce

a region-based coloring system for knot diagrams in RP2 × (0, 1) in Theorem 4.7.

2 Preliminaries

First, we will define knots and links, since these are the objects that provide motivation

for the structure of a quandle.

Definition 2.1. A knot is an oriented embedding of S1 into a 3-manifold. A link (a disjoint

union of knots) is an embedding of S1 ⊔ · · · ⊔ S1 into a 3-manifold.

By an abuse of notation, we often identify links with their images and view them as a

subset of the manifold M that they are embedded in.

2.1 Real Projective Space

Because we are studying colorings of knots and links in RP3, we will now describe real

projective space.
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Definition 2.2. Let RPn be the n-manifold Sn/{±1}, which is the n-sphere with antipodal

points identified with each other. In other words, it can be described as the set

{(x0, x1, . . . , xn) | x20 + x21 + · · ·+ x2n = 1}/ ∼,

where the equivalence relation is given by (x0, x1, . . . , xn) ∼ (−x0,−x1, . . . ,−xn).

Lemma 2.3. The space RPn can be thought of as an n-ball where antipodal points on the

boundary are identified.

Proof. Because antipodal points are identified, we can consider the top hemisphere

{(x0, x1, . . . , xn) | x20 + x21 + · · ·+ x2n = 1}/ ∼,

where xn ≥ 0 and (x0, x1, . . . , xn) ∼ (−x0,−x1, . . . ,−xn). In this set, most of the duplicate

points have been removed, but in the set

{(x0, x1, . . . , xn−1, 0) | x20 + x21 + . . . x2n−1 = 1},

antipodal points are still identified. Thus, we can “flatten” this hemisphere into n-dimensional

space by projecting it onto the hyperplane defined by xn = 0, and visualize this as an n-

dimensional ball where antipodal points are identified. Explicitly, this is the set

{(x0, x1, . . . , xn−1) | x20 + x21 + · · ·+ x2n−1 ≤ 1},

where (x0, x1, . . . , xn−1) ∼ (−x0,−x1, . . . ,−xn−1). ■

We are also interested in quandles, which are defined in Definition 3.1, in RP2 × (0, 1).

Similarly to RP3, the manifold RP2, can be thought of S2/{±1}, or the 2-sphere with an-

tipodal points glued to each other. Thus, we can describe RP2 × (0, 1) using the set

{(x, y, z, t) | x2 + y2 + z2 = 1, 0 ≤ t ≤ 1}/ ∼,

where (x, y, z, t) ∼ (−x,−y,−z, t). Analogously to RP3, there is also an interpretation of

RP2 as a two-dimensional disk where antipodal points are identified.
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2.2 Slide Moves

Similarly to how knots in three-dimensional Euclidean space can be projected to R2,

knots in RP3 and RP2 × (0, 1) can also be visualized with a two-dimensional diagram.

Definition 2.4. A tangle is an embedding of a disjoint union of n arcs and m circles into a

3-ball, where all 2n endpoints of the arcs are sent to points on the ball’s boundary.

Since RP3 can be thought of as a three-dimensional ball where antipodal points are

glued together, we can project knots from RP3 into two-dimensional space by expressing

them diagrammatically as a tangle where antipodal points are glued, and over-crossings and

under-crossings are distinguished from one another.

In R3, any ambient isotopy of a knot can be expressed in R2 through a combination of

Reidemeister moves and planar isotopies [2]. There is also an analogue of this in RP3, which

we now establish.

Theorem 2.5 ([5]). In addition to the three Reidemeister moves that describe ambient iso-

topies of the knot, there are two additional slide moves (described in Figure 2) that define

ambient isotopies in RP3.

Figure 2: Slide move I pushes a loop through the boundary, and slide move II pushes a

crossing through the boundary. Graphic created by the student researcher based on [5, 6]

using Ibis Paint X, 2025.

Throughout this paper, the rectangle with a P will represent the rest of the knot that is

unaffected by these moves. The P stays upright in Figure 2, showing that the orientation of

the rest of the knot does not change.
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Theorem 2.6. In RP2 × (0, 1), there are also two additional slide moves that help describe

ambient isotopies of the knot. Slide move I is identical to that of RP3, and for slide move II

in RP2 × (0, 1), the crossing is oriented differently when it passes through the boundary, as

shown below in Figure 3.

Remark. The reason for the flipped orientation is because in RP3, antipodal points are

identified with each other, so

(x, y, z) ∼ (−x,−y,−z).

On the other hand, in RP2×(0, 1), points (x, y, z) on the boundary get equated to (−x,−y, z)
since the coordinate corresponding to the element of (0, 1) does not change. Due to this

distinction, we must treat the coloring of knots in the manifolds RP3 and RP2 × (0, 1)

differently.

Figure 3: Slide move II in RP2 × (0, 1) results in a differently oriented crossing. Graphic

created by the student researcher using Ibis Paint X, 2025.

3 Quandles

We are interested in determining whether or not two knots are isotopic, or equivalent,

by computing invariants of the knot. One such way is through coloring the knot under a set

of rules such that the number of colorings of the knot will stay the same under all three of

the Reidemeister moves. Thus, the number of colorings of the knot would be an oriented

link invariant. Formally, we will describe such a system with a quandle, where the arcs are

colored by elements of a set Q. We now present fundamental properties of quandles.

Definition 3.1 ([1]). A quandle is a pair (Q, ∗), where Q is a set and ∗ : Q × Q → Q is a

binary operation on Q satisfying the following conditions:

1. The operation ∗ is idempotent. In other words, for any element a ∈ Q, a ∗ a = a.
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2. There exists an inverse operation ∗ : Q × Q → Q such that any elements a, b ∈ Q

satisfy the relations (a ∗ b) ∗ b = a and (b ∗ a) ∗ a = b.

3. The operation ∗ is self-distributive. Given elements a, b, c ∈ Q, then it is true that

(a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

Note that conditions 1, 2, and 3 correspond to the first, second, and third Reidemeister

moves, respectively.

Definition 3.2. In an oriented knot diagram D, let arcs(D) denote the set of arcs of D. Let

ψ : arcs(D) → Q denote a coloring of arcs of D satisfying the conditions in Figure 4.

Definition 3.3. Let colQ(D) denote the set of possible ψ for a knot diagram D.

Theorem 3.4 ([1]). The size of colQ(D) is invariant under each of the Reidemeister moves

and therefore under any ambient isotopy of the knot.

Figure 4: As shown on the left, in a crossing with positive orientation, the color of the third
arc is given by a ∗ b, and as shown on the right, in a crossing with negative orientation, the
color of the third arc is given by a ∗ b. Graphic created by the student researcher using Ibis
Paint X, 2025.

Example 3.5. We can attach the Joyce quandle to a group G, with conjugation as the

operation. Specifically, let a ∗ b = bab−1 and a ∗ b = b−1ab, as described in [7]. We can verify

this satisfies the three axioms of a quandle:

1. The operation is idempotent, because a ∗ a = a · a · a−1 = a.

2. The inverse operation is valid, because

(a ∗ b) ∗ b = bab−1 ∗ b = b−1bab−1b,

which is equal to a. It can be similarly shown that (b ∗ a) ∗ a = b.
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3. The quandle operation also satisfies self-distributivity, because

(a ∗ c) ∗ (b ∗ c) = (cac−1) ∗ (cbc−1)

= cbc−1cac−1cb−1c−1

= cbab−1c−1

= bab−1 ∗ c

= (a ∗ b) ∗ c.

3.1 Fox n-coloring and the Fox Group

Definition 3.6. A Fox coloring is a quandle on some abelian group A where we define

a ∗ b = a ∗ b = 2b− a. If A is of the form Z/nZ, we call this a Fox n-coloring.

In the Fox n-coloring, the condition is commonly expressed as 2b = a+c (mod n), where

a and c are the colors of the undercrossing strands and b is the color of the overcrossing

strand, and is illustrated in Figure 1. We can easily verify that the Fox n-coloring satisfies

the axioms of a quandle.

Lemma 3.7. The set of Fox colorings of a knot diagram D by an abelian group A form a

group. Given two Fox colorings of the same knot diagram ψ1, ψ2 ∈ colA(D), we define ψ1+ψ2

to be the coloring such that for each strand s ∈ D, (ψ1 + ψ2)(s) := ψ1(s) + ψ2(s).

Moreover, we can verify using the three Reidemeister moves that not only is the size of

the group a knot invariant, but the group itself is also a knot invariant, up to isomorphism.

For example, if this group was isomorphic to Z/3Z × Z/3Z for one link and isomorphic to

Z/9Z for another link, the two links can still be distinguished.

Proposition 3.8. There exists a quandle isomorphism between the Joyce quandle on the

reflections in the dihedral group Dn = ⟨r, s | rn = 1, s2 = 1, srs = r−1⟩ and the Fox n-

coloring quandle FZ/nZ.

Proof. Let QDn be colored with the set {s, sr, . . . , srn−1}. Then if we let two elements a, b ∈
QDn be expressed as a = srk and b = srℓ, we can compute that

a ∗ b = bab−1 = srℓ · srk · srℓ = sr2ℓ−k,

suggesting that there is a quandle isomorphism φ : QDn → FZ/nZ where φ(srk) = k. ■
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More generally, there is also a notion of a fundamental group of the Fox coloring.

Definition 3.9 ([1]). Let FD be the fundamental group of the Fox coloring of an oriented

knot diagram D. Define it to be the group generated by arcs(D), the set of arcs of D, with

the set of relations such that at every crossing with under-strands xi and xk and over-strand

xj, we have xi + xk = 2xj.

Proposition 3.10. The fundamental group of the Fox coloring is a knot invariant. In par-

ticular, the group of Fox colorings of a link diagram by an abelian group A is isomorphic to

the group of homomorphisms from FD to A.

We can verify this using the three Reidemeister moves—due to the structure of the

quandle, each of the moves will not add additional information to the set of relations of

the link diagram. Thus, the fundamental group of Fox colorings is a more general way to

understand the Fox colorings of a knot.

3.2 Quandles in RP2 × (0, 1)

We now extend the notion of a quandle to the manifold RP2 × (0, 1), and analogously

the notions of the Fox coloring and the Joyce quandle. We call two strands antipodal if they

are connected to antipodal points on the boundary of the disk.

Definition 3.11. Let Q be a quandle and let φ : Q → Q be an involution satisfying the

property that φ(a∗b) = φ(a) ∗ φ(b). Then a (Q,φ)-coloring is a coloring of the knot diagram

such that if a strand passes through a boundary point and is colored with c, then the strand

passing through the antipodal point is colored with φ(c).

We want φ to be an involution because we are given that if a strand x is colored with c,

the antipodal strand x′ is colored by φ(c). Then the strand antipodal to x′ must be colored

by φ(φ(c)). However, the strand antipodal to x′ is just x, which we know is colored with c.

Thus, we obtain the condition that φ(φ(c)) = c.

Theorem 3.12. For any quandle Q and involution φ such that φ(a ∗ b) = φ(a) ∗ φ(b), the
number of (Q,φ)-colorings of a link in RP2 × (0, 1) is an oriented link invariant.

Proof. We want to show that the number of colorings under (Q,φ) is invariant under both

slide moves. In particular, as shown in Figure 5, the condition corresponding to slide move

I is that φ(a) = φ(b) implies a = b, or simply that φ is injective. Since φ is an involution,

this condition is automatically satisfied.
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Figure 5: Condition arising from slide move I in RP2× (0, 1). Graphic created by the student
researcher using Ibis Paint X, 2025.

Figure 6 gives us a direct bijection between colorings of the knot before and after slide

move II is performed, as long as φ(a ∗ b) = φ(a) ∗ φ(b). Thus, because there are explicit

Figure 6: Condition arising from slide move II in RP2×(0, 1). Graphic created by the student
researcher using Ibis Paint X, 2025.

bijections for colorings under the slide moves, the number of colorings is an oriented link

invariant. ■

Corollary 3.13. Let K be a knot in RP2 × (0, 1). If K is colored under the Joyce quandle,

with the additional constraint that the colors of arcs connected to antipodal points must be

inverses of each other, the number of colorings forms a knot invariant.

Proof. Consider the Joyce quandle, described in Example 3.5. We can verify that this satisfies

the three axioms of a quandle, and we can extend this to knots in RP2 × (0, 1) by defining

φ(a) = a−1. Then we can see that

φ(a) ∗ φ(b) = ba−1b−1 = (bab−1)−1 = φ(a ∗ b).

Thus, φ is an involution that satisfies the relation demonstrated in Figure 6. ■
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Remark. In RP3, a system of coloring similar to the one described in Theorem 3.12 force Q

to be the trivial quandle. Consider the condition that arises from slide move II in RP3, as

shown in Figure 7.

Figure 7: In RP3, slide move II tells us that the quandle must be trivial. Graphic created by

the student researcher using Ibis Paint X, 2025.

Notice that if we want the number of colorings in both representations of the knot to be

the same, it must be true that φ(b) ∗φ(a) = φ(b) for all a, b ∈ Q, which means that Q must

be the trivial quandle.

We can use this quandle to differentiate between two links in RP2 × (0, 1) that have the

same preimage.

Proposition 3.14. When colored by the Joyce quandle with the set {s, sr, sr2, sr3} ⊂ D4

(which, as described in Proposition 3.8, is isomorphic to the Fox 4-coloring), the two links

shown in Figure 8 (which have the same preimage) can be differentiated.

Figure 8: Two different links in RP2 × (0, 1) that have the same preimage. Graphic created
by the student researcher using Ibis Paint X, 2025.

Proof. For the link on the left, let a = srk and b = srℓ. Then we have the condition that

a−1 = bab−1. Thus,

srk = srℓsrksrℓ,
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which simplifies to srk = srℓr−krℓ. This condition implies that 2k ≡ 2ℓ (mod 4), so k ≡ ℓ

(mod 2).We can then see that there are 8 possible colorings, since there are 4 possible values

of k and 2 possible values of ℓ for each value of k. However, the affine unknot in RP2× (0, 1)

(on the right) has 4 possible colorings, so both links must be different. ■

3.3 Fox n-colorings in RP2 × (0, 1)

Analogously to the fundamental group of Fox colorings in S3, we can also define a fun-

damental Z[t]/(t2 − 1)-module of Fox colorings in RP2 × (0, 1). Recall that a Z[t] module

on an abelian group A is defined with an endomorphism φ(x) = tx, where x, tx ∈ A. In a

Z[t]/(t2 − 1)-module, we have the additional constraint that φ2(x) = 1, so φ must be an

involutive automorphism.

Lemma 3.15. There is a categorical equivalence between the category of Z[t]/(t2−1)-modules

and the category of a pair (A,φ) of an abelian group A and an involutive automorphism φ.

Definition 3.16. The fundamental Z[t]/(t2 − 1)-module of Fox colorings FD of a knot

diagram D in RP2× (0, 1) is the Z[t]/(t2− 1)-module generated by arcs(D) and governed by

the following relations:

• At every crossing, if xi and xk are the colors of the undercrossing strands and xj is the

color of the overcrossing strand, then xi + xk = 2xj.

• If x and x′ are antipodal strands, then x′ = φ(x), where φ is the corresponding invo-

lutive automorphism.

Similar to the fundamental group of Fox colorings in S3, the fundamental Z[t]/(t2 − 1)-

module of Fox colorings in RP2 × (0, 1) helps us better understand the set of Fox colorings

of a knot diagram in RP2 × (0, 1). Analogously, every such Fox n-coloring can be thought of

as a homomorphism from FD to the Z[t]/(t2 − 1) module of A.

4 Dehn colorings

Recall the Dehn presentation of a knot, as described in Definition 4.1. The link invariants

described in this sections are colorings of regions motivated by the Dehn presentation of the

fundamental group of the knot complement.
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4.1 Presentation for the Fundamental Group of the Link Comple-

ment in RP3

The fundamental group of the complement of a link L in a manifoldM , denoted π1(M\L),
is an important object in knot theory, especially because it is close to being a complete link

invariant [8]. Thus, our knot invariants may be motivated by homomorphisms from π1(M \L)
to groups with simpler structures that are easier to understand, such as the cyclic group or

the dihedral group.

One presentation for a link complement in S3 is Dehn’s presentation, which is defined as

follows.

Definition 4.1 (Dehn’s presentation [1, 9]). Consider a checkerboard coloring of regions

bounded by arcs of the link diagram of a link L. Then π1(S3 \ L) is the group of loops

starting from a base point P in the outer region, up to homotopy. The generators of the

group correspond to the paths starting from P and going through the regions such that the

path is positively oriented if the region is light and negatively oriented if the region is dark.

Additionally, we have a relation for each crossing that begins from a dark region, then

travels to the adjacent light region separated by the overcrossing arc, then goes to the next

adjacent dark region and light region.

For example, in Figure 9 we get the relation that cdab = 1, where a, b, c, and d are

generators corresponding to the regions they pass through. We could also equivalently get

the relation that abcd = 1.

We are interested in a presentation for the complement of a link in RP3. This presentation

is a generalization of Dehn’s presentation for the link complement in S3.

Figure 9: Relation abcd = 1 at a crossing in a Dehn presentation of a link. Graphic created

by the student researcher based on [9] using Ibis Paint X, 2025.
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Definition 4.2 (Presentation of π1(RP3 \L) [9]). Consider the group of loops starting from

a base point P (up to homotopy), which we choose to be the point defined by the north

pole N and south pole S of the ball corresponding to RP3. Choose a checkerboard coloring

of regions of the projection of the link. Similarly to in S3, the generators of the group are as

follows:

• If the region is dark, the generator is the path through the region from N to S.

• If the region is light, the generator is the path through the region from S to N .

These generate π1(RP3 \ L), and we have additional relations based on the crossings and

antipodal regions, as follows:

• There is the same relation at each crossing as in the Dehn presentation of the link

complement in S3, shown in Figure 9.

• If a and b are generators corresponding to regions of the same color adjacent to an-

tipodal arcs, then a = b−1.

• If a and b are generators corresponding to regions of different colors adjacent to an-

tipodal arcs, then a = b.

4.2 Dehn colorings in S3

Given a link L, consider a homomorphism from π1(S3 \L) to the dihedral group Dn such

that generators corresponding to dark regions map to elements of Dn are of the form ris and

generators corresponding to light regions correspond to elements of the form rj, as shown in

Figure 10.

Figure 10: One possible mapping from π1(S3 \ L) to Dn. The shaded and unshaded regions

correspond to the dark and light regions, respectively, in the checkerboard coloring of the

knot. Graphic created by the student researcher using Ibis Paint X, 2025.
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Then the condition we get from the relation corresponding to this crossing is risrjrksrℓ =

1. Because the dihedral group has the relation that srs = r−1, we can simplify this condition

to

risrjrksrℓ = risrj+ksrℓ = rir−j−krℓ = ri−j−k+ℓ = 1,

which tells us that i− j − k + ℓ = 0. Another possible convention is to map dark regions to

elements of the form ri and light regions to elements of the form rjs, which would tell us

that i+ j − k − ℓ = 0.

This motivates the following link invariant:

Definition 4.3 (Dehn coloring). Let A be any abelian group. Define a Dehn coloring to

be a coloring of the regions of the link projection such that at any crossing, the sum of the

colors on one side of the overcrossing is equal to the sum of the colors on the other side of

the overcrossing. Specifically, in Figure 11, we get the condition that c1 + c2 = c3 + c4 at

every crossing.

Theorem 4.4. The number of Dehn colorings is a link invariant.

This can be shown by considering how the colorings change under the three Reidemeister

moves.

4.3 Dehn colorings in RP3

Similarly to the Dehn colorings in S3, we can extend this idea to RP3 by coloring the

regions formed by the link projection in a way that is based on the Dehn presentation of the

fundamental group of the link complement.

Lemma 4.5. The number of boundary points in a diagram of a link in RP3 mod 4 is invari-

ant.

Proof. Out of the three Reidemeister moves and the two slide moves, slide move I is the only

one that changes the number of boundary points. Since slide move I changes the number of

boundary points by 4, this implies the result. ■

Theorem 4.6. Let L be a link such that the number of boundary points on a projection of

L is divisible by 4. Color the regions of the link projection by elements of an abelian group

A, and let φ be an involutive automorphism on A. At each crossing, suppose the regions on

one side of the overcrossing are colored by c1 and c2 and the regions on the other side are

colored by c3 and c4, as shown in Figure 11. Then the number of colorings of the regions by

elements of A conforming to the following conditions is a link invariant in RP3.
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• At every crossing, c1 + c2 + φ(c3) + φ(c4) = 0.

• If a and a′ are the colors of regions adjacent to antipodal arcs:

– If a and a′ are both dark, then a′ = a.

– If a and a′ are both light, then a′ = φ(a).

Figure 11: Colorings of regions around a crossing. Graphic created by the student researcher

using Ibis Paint X, 2025.

Proof. By Lemma 4.5, the number of boundary points is divisible by 4. Thus, regions con-

nected to each other through antipodal arcs will always be the same color under a checker-

board coloring of the knot diagram. Therefore, the condition is well-defined.

The proof that the number of colorings is invariant under the three Reidemeister moves is

the analogous to the proof for the classical case in S3 where φ(c) = −c; since the Reidemeister

moves do not affect the boundary points, these are unaffected by the conditions pertaining

to regions adjacent to antipodal arcs.

Slide move I gives us a direct bijection between colorings of the knot diagrams. If the

region inside the loop is dark, then if it is colored with a, it must still be colored with a when

pulled through the boundary, as shown in Figure 12.

Figure 12: Bijection between colorings under slide move I when the region is dark. Graphic

created by the student researcher using Ibis Paint X, 2025.
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Similarly, if the region inside the loop is light and is colored with a, the region adjacent

to the antipodal arc when the loop is pulled through the boundary must be colored with

φ(a), as shown in Figure 13.

Figure 13: Bijection between colorings under slide move I when the region is light. Graphic

created by the student researcher using Ibis Paint X, 2025.

Slide move II also preserves the number of Dehn colorings of the link diagram, as shown

in Figure 14.

Figure 14: Bijection between colorings under slide move II. Graphic created by the student

researcher using Ibis Paint X, 2025.

Suppose that at a crossing next to the boundary, the colors of the regions around it

satisfy a+ b+φ(x)+φ(c) = 0, as shown on the left of Figure 14. When the regions adjacent

to the boundary arcs are dark, after slide move II is performed, the result is shown on the
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top of Figure 14, and it gives us the condition that

a+ φ(c) + φ(x) + φ(φ(b)) = a+ φ(c) + φ(x) + b = 0,

which is equivalent to the original condition. Similarly, when the regions adjacent to the

boundary arcs are light, as shown on the bottom left of Figure 14, we get the condition

b+ φ(x) + φ(c) + φ(φ(a)) = b+ φ(x) + φ(c) + a = 0,

after the move is performed, which is also equivalent to the original condition. Thus, we get

a bijection between colorings of the link before and after the move for either checkerboard

pattern of the diagram.

Since the total number of colorings will stay the same under all five possible moves, we

have a link invariant. ■

Remark. The condition on colors of antipodal regions is motivated by a homomorphism from

π1(RP3 \ L) to Dn = Z/nZ ⋊φ Z/2Z similar to the one described in Section 4.2. Because of

how the presentation of the fundamental group of the link complement is defined in RP3, in

addition to the condition for Dehn colorings in S3, we also want the generators corresponding

to antipodal regions in Dn to be inverses of each other, since they are assumed to be the

same color and this corresponds to the condition stated in Definition 4.2. Thus, since dark

regions are colored by reflections (which are their own inverse), we have a′ = a for dark

antipodal regions, and since light regions are colored by rotations (where r−k is the inverse

of rk), we have the generalized condition a′ = φ(a) for light antipodal regions.

4.4 Dehn colorings in RP2 × (0, 1)

We now pursue analogues of these results in RP2 × (0, 1) by coloring regions of link

diagrams in RP2 × (0, 1).

Theorem 4.7. Let A be an abelian group, and φ be an involutive automorphism on A.

Then the number of Dehn colorings of a link diagram as described in Definition 4.3, with

the additional constraint that if a and a′ are the colors of regions adjacent to antipodal arcs,

then a′ = φ(a), is a link invariant.

Notably, unlike in RP3, we do not require the number of boundary points to be a multiple

of 4, nor do we assign a checkerboard coloring to the link diagram.
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Proof. Because the Reidemeister moves do not affect the boundary points, the number of

colorings should stay the same under any of the three Reidemeister moves since we have

already shown this in Theorem 4.4.

Figure 15: Bijection between colorings under slide move II in RP2 × (0, 1). Graphic created

by the student researcher using Ibis Paint X, 2025.

The proof that slide move I preserves the number of colorings is the same as the one

demonstrated in Figure 13.

To show the slide move II keeps the number of colorings the same, consider Figure 15.

On the left, we have the condition that a+ b+ φ(x) + φ(c) = 0. Lastly, for the second slide

move, again let the regions be colored in a way that satisfies the conditions in Theorem 4.6.

When the crossing is pulled over the boundary and the rest of the coloring is not disturbed,

the condition is still satisfied since

φ(x) + φ(c) + φ(φ(a)) + φ(φ(b)) = φ(x) + φ(c) + a+ b = 0.

Thus, there is a bijection between colorings before and after slide move II, so the number of

colorings must be invariant. ■
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