Coloring-Based Knot Invariants in Projective Space

Sophia Jin

Under the Direction of

Kenta Suzuki
Princeton University

Research Science Institute
July 26, 2025



Abstract

In this paper, we will determine and characterize knot invariants related to coloring in
RP? and RP? x (0,1). In S?, there exist notions of colorings related to coloring the regions
and strands, and we extend those to RP? and RP? x (0,1). In RP? x (0, 1), we can establish
an involutive function that determines the colors of antipodal points and attach it to the
structure of a quandle. We attach such a function to the Joyce quandle, giving us a knot
invariant that allows us to distinguish between two links. However, such a function does not
work as well in RIP3, so we instead establish a knot invariant from coloring regions of the
projections of certain links, based on the Dehn presentation of the fundamental group of the
knot complement. We establish a similar invariant for all links in RP? x (0, 1).

Summary

In this paper, we study knots as abstract mathematical objects on projective spaces. In
particular, we will study knots that live in a sphere where diametrically opposite points are
identified with, or “glued to” each other. We will also study knots that live in a cylinder where
diametrically opposite points of the cross-sectional circles are identified with each other. We
aim to distinguish between knots in these spaces by finding and characterizing methods of
coloring these knots under a set of restraints, so that the number of colorings satisfying our
restraints always stays the same no matter how the knot is deformed. This will tell us that
any two knots with a different number of colorings must be different from each other. In
one of the spaces, we found a way to color the arcs of the projection—the image seen when
viewed from above—of the knot. In both spaces, we found a way to color the regions formed
by the projection of the knot such that the number of colorings is always the same no matter
how the knot is deformed.



1 Introduction

In the late nineteenth century, scientists such as Helmholtz, Tait, and Thomson believed
that the chemical elements were made of knots, which are closed loops in space, and links,
which are a disjoint union of knots, in a material they called “ether.” This motivated the
tabulation of knots, because they believed that they were making a table of the elements [I].
Although this theory was disproved, mathematicians continued to be interested in tabulating
and identifying knots, due to their intrinsic interest. In particular, they wanted to be able
to distinguish knots from each other.

Knots in R*® (which are equivalent to knots in S?) can be visualized diagramatically
by a projection into R?, where over-crossings and under-crossings are distinguished from
one another. This results in an image of a knot that is comprised of arcs. In 1926, Reide-
meister established the three Reidemeister moves on these knot diagrams, which consist of
twisting an arc, pulling one arc over or under another arc, or pulling an arc over or under a
crossing. Furthermore, he proved that when such moves are combined with planar isotopies—
deformations of the planar projection of the knot—they can transform any projection of a
knot into another projection of the same knot [2].

These moves motivate the quandle, a system for coloring arcs of a projection of the knot
such that the number of colorings is a knot invariant. The structure of the quandle follows
axioms that respect the Reidemeister moves so that any Reidemeister move will not change
the number of colorings of a knot under a quandle. For example, the Fox n-coloring colors
arcs with elements of Z/nZ such that at each crossing, the sum of the colors assigned to the
arcs on both sides of the under-crossing is equal to two times the color of the over-crossing, as
shown in Figure[I} Other types of coloring-based knot invariants include the Dehn coloring,
which colors regions of the knot projection, and the Alexander-Briggs coloring, which colors
crossings of the knot projection [3 4]. In 1990, Drobotukhina began studying knots in RIP3,
establishing two slide moves for those knots in addition to the three Reidemeister moves,
and found an analogue to the Jones polynomial for links in RP? [5].

In this paper, we characterize knot invariants related to quandles in RP? x (0,1) by
extending the quandle to contain axioms that correspond to the slide moves as well, and find
an example of a quandle that helps distinguish between two links in RP? x (0, 1) that have
the same 2-covering. We also determine a region-based coloring invariant for links in RIP3.

We begin in Section 2 by establishing the preliminary ideas and definitions needed to
study knots in projective space. In Section 3, we introduce a structure that builds off of a
quandle to help distinguish knots in RP? x (0, 1). In particular, in Theorem , we show



c
2b=a+ ¢ (mod n)

Figure 1: Rule for Fox n-coloring. Graphic created by the student researcher based on [3]
using Ibis Paint X, 2025.

that for any quandle () and involution ¢ such that ¢(a x b) = p(a) * ¢(b), the number of
(Q, ¢)-colorings of a link in RP? x (0,1) is an oriented link invariant. We also extend the
notion of the fundamental group of Fox colorings to a Z[t]/(¢* — 1)-module for such colorings.
However, the structure of RP? forces any quandle behind a similar system of coloring in RIP3
to be trivial. Thus, in Section 4, we determine a way to color regions of the diagram of a knot
in RP? if its number of boundary points is divisible by 4 in Theorem , and also introduce
a region-based coloring system for knot diagrams in RP? x (0, 1) in Theorem .

2 Preliminaries

First, we will define knots and links, since these are the objects that provide motivation

for the structure of a quandle.

Definition 2.1. A knot is an oriented embedding of S! into a 3-manifold. A link (a disjoint

union of knots) is an embedding of S' L/ - - - US! into a 3-manifold.

By an abuse of notation, we often identify links with their images and view them as a
subset of the manifold M that they are embedded in.

2.1 Real Projective Space

Because we are studying colorings of knots and links in RP?, we will now describe real

projective space.



Definition 2.2. Let RP" be the n-manifold S”/{+1}, which is the n-sphere with antipodal

points identified with each other. In other words, it can be described as the set
{($0ax17"'7$n) | m(2)_‘_1‘%_{__|_‘(E721 = 1}/ ~

where the equivalence relation is given by (xg, z1,...,2,) ~ (—xg, =21, ..., —Ty).

Lemma 2.3. The space RP" can be thought of as an n-ball where antipodal points on the

boundary are identified.

Proof. Because antipodal points are identified, we can consider the top hemisphere
{(zo,21,...,2p) |22+ 22+ +22 =1}/ ~,

where 1z, > 0 and (g, x1,...,2,) ~ (=29, —%1,...,—Zy,). In this set, most of the duplicate

points have been removed, but in the set
{(zo,T1,. ., Tp_1,0) | 22 + 2% + ... 22 | =1},

antipodal points are still identified. Thus, we can “flatten” this hemisphere into n-dimensional
space by projecting it onto the hyperplane defined by x,, = 0, and visualize this as an n-

dimensional ball where antipodal points are identified. Explicitly, this is the set
{<x07x1>"'7xn*1) ‘ l‘g—l—l’% +o —|—£IZ’Z?1 < 1}7

where (29,21, ...,Tp_1) ~ (—T0, —T1,. .., —Tp_1)- [ |

We are also interested in quandles, which are defined in Definition in RP? x (0,1).
Similarly to RP3, the manifold RP?, can be thought of S?/{#£1}, or the 2-sphere with an-
tipodal points glued to each other. Thus, we can describe RP? x (0,1) using the set

{(x,y,2,t) | 2>+ + 22 =1, 0<t <1}/ ~,

where (x,y,z,t) ~ (—x,—y, —z,t). Analogously to RP3, there is also an interpretation of

RP? as a two-dimensional disk where antipodal points are identified.



2.2 Slide Moves

Similarly to how knots in three-dimensional Euclidean space can be projected to R?,

knots in RP? and RP? x (0, 1) can also be visualized with a two-dimensional diagram.

Definition 2.4. A tangle is an embedding of a disjoint union of n arcs and m circles into a

3-ball, where all 2n endpoints of the arcs are sent to points on the ball’s boundary.

Since RP? can be thought of as a three-dimensional ball where antipodal points are
glued together, we can project knots from RP? into two-dimensional space by expressing
them diagrammatically as a tangle where antipodal points are glued, and over-crossings and
under-crossings are distinguished from one another.

In R3, any ambient isotopy of a knot can be expressed in R? through a combination of
Reidemeister moves and planar isotopies [2]. There is also an analogue of this in RP3, which

we now establish.

Theorem 2.5 ([0]). In addition to the three Reidemeister moves that describe ambient iso-
topies of the knot, there are two additional slide moves (described in Figure @) that define

ambient isotopies in RIP3.
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Figure 2: Slide move I pushes a loop through the boundary, and slide move II pushes a
crossing through the boundary. Graphic created by the student researcher based on [5 6]
using Ibis Paint X, 2025.

Throughout this paper, the rectangle with a P will represent the rest of the knot that is
unaffected by these moves. The P stays upright in Figure [2, showing that the orientation of
the rest of the knot does not change.



Theorem 2.6. In RP? x (0,1), there are also two additional slide moves that help describe
ambient isotopies of the knot. Slide move I is identical to that of RIP?, and for slide move II
in RP? x (0,1), the crossing is oriented differently when it passes through the boundary, as

shown below in Figure [3,

Remark. The reason for the flipped orientation is because in RP?, antipodal points are
identified with each other, so

('I7 Y, Z) ~ (_'Iv Y, _Z)'
On the other hand, in RP?x (0, 1), points (z, y, 2) on the boundary get equated to (—z, —y, 2)
since the coordinate corresponding to the element of (0,1) does not change. Due to this

distinction, we must treat the coloring of knots in the manifolds RP?® and RP? x (0, 1)
differently.

Figure 3: Slide move IT in RP? x (0,1) results in a differently oriented crossing. Graphic
created by the student researcher using Ibis Paint X, 2025.

3 Quandles

We are interested in determining whether or not two knots are isotopic, or equivalent,
by computing invariants of the knot. One such way is through coloring the knot under a set
of rules such that the number of colorings of the knot will stay the same under all three of
the Reidemeister moves. Thus, the number of colorings of the knot would be an oriented
link invariant. Formally, we will describe such a system with a quandle, where the arcs are

colored by elements of a set (). We now present fundamental properties of quandles.

Definition 3.1 ([1]). A quandle is a pair (Q,*), where @ is a set and *: Q X Q — Q is a

binary operation on ) satisfying the following conditions:

1. The operation * is idempotent. In other words, for any element a € @), a *x a = a.



2. There exists an inverse operation * : () X () — @ such that any elements a,b € @)

satisfy the relations (a % b) ¥ b=a and (b * a) xa = b.

3. The operation * is self-distributive. Given elements a,b,c € @), then it is true that
(axb)xc=(ax*xc)*(bxc).

Note that conditions 1, 2, and 3 correspond to the first, second, and third Reidemeister

moves, respectively.

Definition 3.2. In an oriented knot diagram D, let arcs(D) denote the set of arcs of D. Let
¢ arcs(D) — @ denote a coloring of arcs of D satisfying the conditions in Figure [4]

Definition 3.3. Let colg(D) denote the set of possible ¢ for a knot diagram D.

Theorem 3.4 ([1]). The size of colg(D) is invariant under each of the Reidemeister moves

and therefore under any ambient isotopy of the knot.

a b b a

N /
NN

Figure 4: As shown on the left, in a crossing with positive orientation, the color of the third
arc is given by a * b, and as shown on the right, in a crossing with negative orientation, the
color of the third arc is given by a * b. Graphic created by the student researcher using Ibis
Paint X, 2025.

a*xb a*xb

Example 3.5. We can attach the Joyce quandle to a group G, with conjugation as the
operation. Specifically, let a*b = bab™! and a * b = b~'ab, as described in [7]. We can verify

this satisfies the three axioms of a quandle:

1. The operation is idempotent, because a xa =a-a-a" ' = a.

2. The inverse operation is valid, because
(axb)¥b=0bab~' % b=>b""bab b,

which is equal to a. It can be similarly shown that (b % a) *x a = b.



3. The quandle operation also satisfies self-distributivity, because

(axc)* (bxc)=(cac™') * (cbc™)

= cbe teac ™t eb e
= cbab et
=bab ' xc

= (axb)*c.

3.1 Fox n-coloring and the Fox Group

Definition 3.6. A Fox coloring is a quandle on some abelian group A where we define

axb=a%b=2b—a. If Aisof the form Z/nZ, we call this a Fozx n-coloring.

In the Fox n-coloring, the condition is commonly expressed as 2b = a+¢ (mod n), where
a and c are the colors of the undercrossing strands and b is the color of the overcrossing
strand, and is illustrated in Figure [l We can easily verify that the Fox n-coloring satisfies

the axioms of a quandle.

Lemma 3.7. The set of Fox colorings of a knot diagram D by an abelian group A form a
group. Given two Fox colorings of the same knot diagram 1,1y € cola(D), we define 11 +1)9
to be the coloring such that for each strand s € D, (11 + 13)(s) := ¥1(s) + ¥a(s).

Moreover, we can verify using the three Reidemeister moves that not only is the size of
the group a knot invariant, but the group itself is also a knot invariant, up to isomorphism.
For example, if this group was isomorphic to Z/37Z x Z/37Z for one link and isomorphic to
Z./9Z for another link, the two links can still be distinguished.

Proposition 3.8. There exists a quandle isomorphism between the Joyce quandle on the
reflections in the dihedral group D, = (r,s | r* = 1,s* = 1,srs = r~1) and the Fox n-

coloring quandle Fyynz.

Proof. Let Qp, be colored with the set {s, sr,...,sr" 1}. Then if we let two elements a,b €

4

Qp, be expressed as a = sr* and b = srf, we can compute that

axb=>bab~! = srt. sr¥. srt = sr27k,

suggesting that there is a quandle isomorphism ¢: Qp, — Fz/nz where o(sr*) = k. [



More generally, there is also a notion of a fundamental group of the Fox coloring.

Definition 3.9 ([1]). Let Fp be the fundamental group of the Fox coloring of an oriented
knot diagram D. Define it to be the group generated by arcs(D), the set of arcs of D, with
the set of relations such that at every crossing with under-strands x; and z; and over-strand

xj, we have x; + 7, = 2z;.

Proposition 3.10. The fundamental group of the Fox coloring is a knot invariant. In par-
ticular, the group of Fox colorings of a link diagram by an abelian group A is isomorphic to

the group of homomorphisms from Fp to A.

We can verify this using the three Reidemeister moves—due to the structure of the
quandle, each of the moves will not add additional information to the set of relations of
the link diagram. Thus, the fundamental group of Fox colorings is a more general way to

understand the Fox colorings of a knot.

3.2 Quandles in RP? x (0,1)

We now extend the notion of a quandle to the manifold RP? x (0,1), and analogously
the notions of the Fox coloring and the Joyce quandle. We call two strands antipodal if they

are connected to antipodal points on the boundary of the disk.

Definition 3.11. Let ) be a quandle and let ¢: Q — @ be an involution satisfying the
property that p(axb) = p(a) * p(b). Then a (Q, p)-coloring is a coloring of the knot diagram
such that if a strand passes through a boundary point and is colored with ¢, then the strand

passing through the antipodal point is colored with ¢(c).

We want ¢ to be an involution because we are given that if a strand x is colored with c,
the antipodal strand ' is colored by ¢(c). Then the strand antipodal to 2’ must be colored
by ¢(p(c)). However, the strand antipodal to 2’ is just x, which we know is colored with c.

Thus, we obtain the condition that ¢(p(c)) = c.

Theorem 3.12. For any quandle Q and involution ¢ such that p(a * b) = ¢(a) * @(b), the

number of (Q, ¢)-colorings of a link in RP? x (0,1) is an oriented link invariant.

Proof. We want to show that the number of colorings under (Q, ) is invariant under both
slide moves. In particular, as shown in Figure [5] the condition corresponding to slide move
I is that ¢(a) = ¢(b) implies a = b, or simply that ¢ is injective. Since ¢ is an involution,

this condition is automatically satisfied.



Figure 5: Condition arising from slide move I in RP? x (0, 1). Graphic created by the student
researcher using Ibis Paint X, 2025.

Figure [0] gives us a direct bijection between colorings of the knot before and after slide

move II is performed, as long as ¢(a x b) = ¢(a) * p(b). Thus, because there are explicit

Figure 6: Condition arising from slide move IT in RP? x (0, 1). Graphic created by the student
researcher using Ibis Paint X, 2025.

bijections for colorings under the slide moves, the number of colorings is an oriented link

invariant. u

Corollary 3.13. Let K be a knot in RP? x (0,1). If K is colored under the Joyce quandle,
with the additional constraint that the colors of arcs connected to antipodal points must be

wverses of each other, the number of colorings forms a knot invariant.

Proof. Consider the Joyce quandle, described in Example[3.5] We can verify that this satisfies
the three axioms of a quandle, and we can extend this to knots in RP? x (0,1) by defining

¢(a) = a='. Then we can see that
o(a) ¥ o(b) = ba b7t = (bab™') ™t = p(a xb).

Thus, ¢ is an involution that satisfies the relation demonstrated in Figure [6] [ |



Remark. In RP3, a system of coloring similar to the one described in Theorem force Q)
to be the trivial quandle. Consider the condition that arises from slide move II in RIP3, as

shown in Figure [7]

Figure 7: In RIP3, slide move II tells us that the quandle must be trivial. Graphic created by
the student researcher using Ibis Paint X, 2025.

Notice that if we want the number of colorings in both representations of the knot to be
the same, it must be true that ¢(b) * p(a) = ¢(b) for all a,b € @), which means that ) must
be the trivial quandle.

We can use this quandle to differentiate between two links in RP? x (0, 1) that have the

same preimage.

Proposition 3.14. When colored by the Joyce quandle with the set {s,sr,sr? sr3} C D,
(which, as described in Pfr’opositz'on is isomorphic to the Fox 4-coloring), the two links

shown in Figure@ (which have the same preimage) can be differentiated.

a™t = bab™!

Figure 8: Two different links in RP? x (0, 1) that have the same preimage. Graphic created
by the student researcher using Ibis Paint X, 2025.

Proof. For the link on the left, let a = sr* and b = sr’. Then we have the condition that
a~' = bab~'. Thus,

S’f’k = STZST]CSTE,

10



which simplifies to sr¥ = sr‘r~*rf. This condition implies that 2k = 2¢ (mod 4), so k = ¢
(mod 2). We can then see that there are 8 possible colorings, since there are 4 possible values
of k and 2 possible values of ¢ for each value of k. However, the affine unknot in RP? x (0,1)

(on the right) has 4 possible colorings, so both links must be different. [ |

3.3 Fox n-colorings in RP? x (0, 1)

Analogously to the fundamental group of Fox colorings in S*, we can also define a fun-
damental Z[t]/(t* — 1)-module of Fox colorings in RP? x (0,1). Recall that a Z[t] module
on an abelian group A is defined with an endomorphism ¢(x) = tz, where z,tz € A. In a
Z[t]/(t* — 1)-module, we have the additional constraint that ©?(z) = 1, so ¢ must be an

involutive automorphism.

Lemma 3.15. There is a categorical equivalence between the category of Z|[t]/(t*—1)-modules

and the category of a pair (A, @) of an abelian group A and an involutive automorphism .

Definition 3.16. The fundamental Z[t|/(t* — 1)-module of Fox colorings Fp of a knot
diagram D in RP? x (0,1) is the Z[t]/(t* — 1)-module generated by arcs(D) and governed by

the following relations:

o At every crossing, if x; and x;, are the colors of the undercrossing strands and z; is the

color of the overcrossing strand, then x; + x, = 2x;.

e If x and 2’ are antipodal strands, then 2’ = p(z), where ¢ is the corresponding invo-

lutive automorphism.

Similar to the fundamental group of Fox colorings in S?, the fundamental Z[t]/(t? — 1)-
module of Fox colorings in RP? x (0,1) helps us better understand the set of Fox colorings
of a knot diagram in RP? x (0, 1). Analogously, every such Fox n-coloring can be thought of
as a homomorphism from .Zp to the Z[t]/(t* — 1) module of A.

4 Dehn colorings

Recall the Dehn presentation of a knot, as described in Definition [4.1] The link invariants
described in this sections are colorings of regions motivated by the Dehn presentation of the

fundamental group of the knot complement.

11



4.1 Presentation for the Fundamental Group of the Link Comple-

ment in RP?

The fundamental group of the complement of a link L in a manifold M, denoted 1 (M\ L),
is an important object in knot theory, especially because it is close to being a complete link
invariant [8]. Thus, our knot invariants may be motivated by homomorphisms from 71 (M \ L)
to groups with simpler structures that are easier to understand, such as the cyclic group or
the dihedral group.

One presentation for a link complement in S? is Dehn’s presentation, which is defined as

follows.

Definition 4.1 (Dehn’s presentation [Il, 9]). Consider a checkerboard coloring of regions
bounded by arcs of the link diagram of a link L. Then m;(S* \ L) is the group of loops
starting from a base point P in the outer region, up to homotopy. The generators of the
group correspond to the paths starting from P and going through the regions such that the
path is positively oriented if the region is light and negatively oriented if the region is dark.

Additionally, we have a relation for each crossing that begins from a dark region, then
travels to the adjacent light region separated by the overcrossing arc, then goes to the next

adjacent dark region and light region.

For example, in Figure [J] we get the relation that cdab = 1, where a, b, ¢, and d are
generators corresponding to the regions they pass through. We could also equivalently get
the relation that abed = 1.

We are interested in a presentation for the complement of a link in RIP3. This presentation

is a generalization of Dehn’s presentation for the link complement in S?.

Figure 9: Relation abcd = 1 at a crossing in a Dehn presentation of a link. Graphic created
by the student researcher based on [9] using Ibis Paint X, 2025.
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Definition 4.2 (Presentation of i (RP?\ L) [9]). Consider the group of loops starting from
a base point P (up to homotopy), which we choose to be the point defined by the north
pole N and south pole S of the ball corresponding to RP?. Choose a checkerboard coloring
of regions of the projection of the link. Similarly to in S?, the generators of the group are as

follows:

e If the region is dark, the generator is the path through the region from N to S.

e If the region is light, the generator is the path through the region from S to N.

These generate 7;(RP? \ L), and we have additional relations based on the crossings and

antipodal regions, as follows:
e There is the same relation at each crossing as in the Dehn presentation of the link

complement in S?, shown in Figure @

e If a and b are generators corresponding to regions of the same color adjacent to an-

tipodal arcs, then a = b=,

e If @ and b are generators corresponding to regions of different colors adjacent to an-

tipodal arcs, then a = b.

4.2 Dehn colorings in S3

Given a link L, consider a homomorphism from 7 (S*\ L) to the dihedral group D,, such
that generators corresponding to dark regions map to elements of D,, are of the form r's and

generators corresponding to light regions correspond to elements of the form 77, as shown in

Figure [10]

¢l rls

rs | r’

Figure 10: One possible mapping from 7,(S* \ L) to D,,. The shaded and unshaded regions
correspond to the dark and light regions, respectively, in the checkerboard coloring of the

knot. Graphic created by the student researcher using Ibis Paint X, 2025.

13



Then the condition we get from the relation corresponding to this crossing is r*srir¥srf =

1. Because the dihedral group has the relation that srs = r~!, we can simplify this condition

to

TZSTJT'I{:S'I"E _ ”r‘ZST’j—"kSTZ _ Tzr—J—kré _ Tz—j—k-i—é =1,

which tells us that i — j — k 4+ ¢ = 0. Another possible convention is to map dark regions to
elements of the form ¢ and light regions to elements of the form r/s, which would tell us
that i +j—k—¢=0.

This motivates the following link invariant:

Definition 4.3 (Dehn coloring). Let A be any abelian group. Define a Dehn coloring to
be a coloring of the regions of the link projection such that at any crossing, the sum of the
colors on one side of the overcrossing is equal to the sum of the colors on the other side of
the overcrossing. Specifically, in Figure [I1 we get the condition that ¢; + co = ¢3 + ¢4 at

every crossing.
Theorem 4.4. The number of Dehn colorings is a link invariant.

This can be shown by considering how the colorings change under the three Reidemeister

moves.

4.3 Dehn colorings in RP?

Similarly to the Dehn colorings in S*, we can extend this idea to RP? by coloring the
regions formed by the link projection in a way that is based on the Dehn presentation of the

fundamental group of the link complement.

Lemma 4.5. The number of boundary points in a diagram of a link in RP® mod 4 is invari-

ant.

Proof. Out of the three Reidemeister moves and the two slide moves, slide move I is the only
one that changes the number of boundary points. Since slide move I changes the number of

boundary points by 4, this implies the result. [ |

Theorem 4.6. Let L be a link such that the number of boundary points on a projection of
L s divisible by 4. Color the regions of the link projection by elements of an abelian group
A, and let ¢ be an involutive automorphism on A. At each crossing, suppose the regions on
one side of the overcrossing are colored by ci and co and the regions on the other side are
colored by c3 and cy, as shown in Figure [11l Then the number of colorings of the regions by

elements of A conforming to the following conditions is a link invariant in RIP3.

14



o At every crossing, ¢ + ca + p(c3) + ¢(cq) = 0.
e Ifa and d' are the colors of regions adjacent to antipodal arcs:

— Ifa and a' are both dark, then o' = a.

— Ifa and a' are both light, then a’ = p(a).

Co C1

C3 C4

Figure 11: Colorings of regions around a crossing. Graphic created by the student researcher
using Ibis Paint X, 2025.

Proof. By Lemma the number of boundary points is divisible by 4. Thus, regions con-
nected to each other through antipodal arcs will always be the same color under a checker-
board coloring of the knot diagram. Therefore, the condition is well-defined.

The proof that the number of colorings is invariant under the three Reidemeister moves is
the analogous to the proof for the classical case in S* where ¢(c) = —c¢; since the Reidemeister
moves do not affect the boundary points, these are unaffected by the conditions pertaining
to regions adjacent to antipodal arcs.

Slide move I gives us a direct bijection between colorings of the knot diagrams. If the
region inside the loop is dark, then if it is colored with a, it must still be colored with a when

pulled through the boundary, as shown in Figure [12]

ab

Figure 12: Bijection between colorings under slide move I when the region is dark. Graphic

created by the student researcher using Ibis Paint X, 2025.
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Similarly, if the region inside the loop is light and is colored with a, the region adjacent
to the antipodal arc when the loop is pulled through the boundary must be colored with
¢(a), as shown in Figure (13|

T

Figure 13: Bijection between colorings under slide move I when the region is light. Graphic

created by the student researcher using Ibis Paint X, 2025.

Slide move II also preserves the number of Dehn colorings of the link diagram, as shown
in Figure [14]

b e(c) b p(c)
Xlp[lew [« |P <
c o(b) ¢ e(b)

b c b c
z xa P o(r) | &P x P o)
c " c b

Figure 14: Bijection between colorings under slide move II. Graphic created by the student

researcher using Ibis Paint X, 2025.

Suppose that at a crossing next to the boundary, the colors of the regions around it
satisfy a + b+ ¢(x) + ¢(c) = 0, as shown on the left of Figure [l4, When the regions adjacent

to the boundary arcs are dark, after slide move II is performed, the result is shown on the
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top of Figure [14] and it gives us the condition that

a+p(c) + o) + p(pd) = a+ p(c) + p(x) +b =0,

which is equivalent to the original condition. Similarly, when the regions adjacent to the

boundary arcs are light, as shown on the bottom left of Figure [14] we get the condition

b+ p(z) + ¢(c) + p(p(a) = b+ p(x) + p(c) +a =0,

after the move is performed, which is also equivalent to the original condition. Thus, we get
a bijection between colorings of the link before and after the move for either checkerboard
pattern of the diagram.

Since the total number of colorings will stay the same under all five possible moves, we

have a link invariant. ]

Remark. The condition on colors of antipodal regions is motivated by a homomorphism from
m(RP?\ L) to D,, = Z/nZ x, Z/2Z similar to the one described in Section . Because of
how the presentation of the fundamental group of the link complement is defined in RP?, in
addition to the condition for Dehn colorings in S3, we also want the generators corresponding
to antipodal regions in D, to be inverses of each other, since they are assumed to be the
same color and this corresponds to the condition stated in Definition [£.2] Thus, since dark
regions are colored by reflections (which are their own inverse), we have o’ = a for dark
antipodal regions, and since light regions are colored by rotations (where r=* is the inverse

of 7%), we have the generalized condition a’ = ¢(a) for light antipodal regions.

4.4 Dehn colorings in RP? x (0,1)

We now pursue analogues of these results in RP? x (0,1) by coloring regions of link
diagrams in RP? x (0, 1).

Theorem 4.7. Let A be an abelian group, and ¢ be an involutive automorphism on A.
Then the number of Dehn colorings of a link diagram as described in Definition [{.3, with
the additional constraint that if a and o’ are the colors of regions adjacent to antipodal arcs,

then a' = p(a), is a link invariant.

Notably, unlike in RIP3, we do not require the number of boundary points to be a multiple

of 4, nor do we assign a checkerboard coloring to the link diagram.
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Proof. Because the Reidemeister moves do not affect the boundary points, the number of
colorings should stay the same under any of the three Reidemeister moves since we have
already shown this in Theorem [4.4]

b p(c) b o(c)
iy /a P @(ﬁ) M a P o(z A4 e(a)
c o(b) c o(b)

Figure 15: Bijection between colorings under slide move IT in RP? x (0, 1). Graphic created

by the student researcher using Ibis Paint X, 2025.

The proof that slide move I preserves the number of colorings is the same as the one
demonstrated in Figure (13|

To show the slide move II keeps the number of colorings the same, consider Figure (15|
On the left, we have the condition that a + b+ ¢(z) + ¢(c) = 0. Lastly, for the second slide
move, again let the regions be colored in a way that satisfies the conditions in Theorem [£.6]
When the crossing is pulled over the boundary and the rest of the coloring is not disturbed,

the condition is still satisfied since

p(r) + ¢(c) + p(w(a)) + p(p(b) = w(x) + ¢(c) +a+b=0.

Thus, there is a bijection between colorings before and after slide move II, so the number of

colorings must be invariant. [ |
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