MILNOR K-THEORY AND
THE BLOCH-GABBER-KATO THEOREM

KENTA SUZUKI

ABSTRACT. An exposition on the proof of Bloch-Gabber-Kato theorem, relat-
ing Milnor K-theory and the module of differentials, mostly following [GS17].
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1. SHORT REVIEW OF MILNOR K-THEORY

Milnor K-theory plays a central role in number theory:

Definition 1 (Milnor K-theory [Mil70]). For a field F', define the graded ring
KM(F)=ZaoF* & (F)?® - /la®(1—a):a#0,1€F*).

The relations a ® (1 — a) = 0 are called the Steinberg relations. Let KJM(F) be the
j-th graded piece of the ring. The element a1 ® --- ® a; € KM(F) is denoted as
{al, ce ,aj}.

We will mainly be interested in Milnor K-theory when F' has positive character-
istic.

Example 1.1. K} (F) =7, KM(F) = F*, since there are no relations in degrees
0 and 1.

Example 1.2 ([Mil70, Example 1.5]). If F = F, is a finite field, then KM (F) =
Z®F*,ie., KM(F)=0. Indeed, F* is cyclic of order ¢ — 1, so it has p(q — 1) >
q—1

45= multiplicative generators, where ¢ is Euler’s totient function. Thus, by the

pigeonhole principal the two subsets of the size ¢ — 2 set F'\ {0, 1}

{g:g € F* is a generator} and {1 —g:g € F* is a generator}
1
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intersect, and hence g; = 1 — go for some generators gi1,90 € F*. But then
g1 @ g2 = 1 by the Steinberg relation, so K37(F) = 0.

Milnor K-theory has some functoriality properties:

Proposition-Definition 1 ([Mil70, Lemma 2.1],[GS17, Prop 7.1.4]). Let F be a
field with a discrete valuation v with residue class field k. There exists a unique
homomorphism 0 = 0, called the boundary homomorphism from K,F to K, 1k
such that
Dul{m, s, .y un}) = (T2, .}

for every prime element 7, i.e., ord,m = 1 and for all units us, ..., u,.

Moreover, once a prime element 7 is fixed, there is a unique homomorphism
sM: KM(F) — KM(k), called specialization, with the property

Mg i in e _
si ({7 ug, . mrug ) = {3, -, T )
for all integers i1, ...,4, and units uy, ..., u,.
Remark 1. In particular, if uy,...,u, are units, then 9, ({u1,...,u,}) =1, since

Ow({m,ug, ..., un}) = O({mus,ug, ..., unt),

where both 7 and 7u; are prime.

The residue map allows for the following proposition, which assists in many
computations of Milnor K-theory:

Proposition 1.3 ([Mil70, Thm 2.3]). There is a split exact sequence
0— KM(F)— KMF(t) @ M F[t]/m — 0,
where the direct sum runs over all monic irreducible polynomials ™ € Ft].

Example 1.4. If F = F,(t) is the field of rational functions over the finite field
Fg, then

Z n=20

KM(F)— F* n=1
" D, cx, iy (Baltl/m)* n=2
0 n>2,

where 7 € F,[t] runs through the monic irreducible polynomials. Indeed, by Propo-
sition there are exact sequences

0= Ka(Fy) =0 Ky(F) = P Ki(Fy[tl/m) = € (Fylt]/m)*
TER,[t] nER,[t]

and
0— K3(Fy) =0— K3(F) » @ Ka(F,[t]/m) =0— 0.
mER[t]

Milnor K-theory is closely related to cycles, and is “motivic” in nature:
Proposition 1.5 (NS89, Thm 4.9]). For any field F, there is a natural isomor-
phism CH’ (K, j) = KM(F).

When F has characteristic p, the ring KM (F) is also closely related to differen-
tials on F'.
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1.1. The norm map. Let F’'/F be a finite extension. Then |[GSI7, Section 7.3]
constructs a family of maps Npr/p: KM (F') — KM (F) such that:

(1) the map Np//p: KM(F") — K}M(F) is multiplication by [F’ : FJ;
(2) the map Np//p: KM(F') — K{(F) is multiplication by the field norm
Npiyp(a) = detp(F 2% F');
(3) for o € KM(F) and 8 € KE(F'),
Npyp({ar, B}) = {a, Npp(6)},

where ap is the image of o under the natural homomorphism KM (F) —
KM(F'); and
(4) for a tower of field extensions F”'/F'/F,
NF”/F = NF’/F ONF///F.
2. BACKGROUND ON DIFFERENTIALS IN CHARACTERISTIC p

For any F-vector space V, let PV denote an alternative F-vector space structure
on V, given by a - w := a’w for any a € F and w € V.

Consider the module Q := QF , of absolute differentials over F'. There is a
chain complex

0 1 2
ap =0 LoL Lot Lo
and let B% := im(d""') be the n-cocycles, and let Z% := ker(d") be the n-
coboundaries. We may define the cohomology H™(QY,) := Z}/B%.

Proposition 2.1 (Cartier, [GS17, Thm 9.4.3]). There is an isomorphism
yi Q5 PHT(O3.),
defined by y(day A --- ANday,) :== afﬁldal A---AaP~Yda,,, where a; € F.
Let
v(n)p :=ker(y —id: Q% — Q% /B%).
Example 2.2. If F' =T,[z]/f(z) is a finite field, where f(z) € F,[z] is irreducible,

we have
Of = Fda/f'(v)de = Fplz]/(f(x), f'(x)) = 0.

In particular v(n)p = 0 for n > 1.

Example 2.3. If F =F,(¢) is the field of rational functions on the finite field F,,
we have QL = Fdt, hence Q% = 0 for n > 2. Thus, v(n)r = 0forn > 2. Forn =1,

v(1)p = {f(t)dt € Fdt : f(t)PtP" dt = f(t)dt (mod B)}
= {f(t)dt € Fdt: f(t)PtP~" — f(t) = g'(t), for some g € F}.
We now define
dlog: (F*)®" — v(n)p
a1 ® - ay »—>af1da1/\--~/\a;1dan.
Here dlog a priori only maps into Q%, but its image lies in v(n)p since
y(a7tday A - Aaytday) = ayPa? Mday A -+ AagPa? N day,

= afldal ARERWA a;ldan.
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This gives a ring homomorphism
Tensy (F*)=Z & F* @ (F)®? @ - — v(e)p.
In fact, dlog factors through Milnor K-theory:

Lemma 2.4 ([GS17, Lem 9.5.1]). The map dlog factors through the quotient
(F*)en — KM(F)/p. It thus defines a graded ring homomorphism ¢ : KM(F)/p —
v(e)r, sending {ay,...,a,} to afldal A---Naytda, for every ay,...,a, € FX.

Proof. We have pv(n)p C pQ% = 0, since pda = d(pa) = 0. Thus it suffices to
check the Steinberg relations. For a # 0,1 we have

dlog(a® (1 —a)) = dlog(a) A dlog(l — a)

1
= ——daANd(l -
a(l—a) aNd(l—a)
L da N\ d
=————daAda
a(l —a)

=0. t

2.1. Statement of the Bloch-Gabber-Kato theorem. The following theorem
relates the a priori very distinct objects KM and v(n):

Theorem 2.5 (Bloch-Gabber-Kato theorem [GS17, Thm 9.5.2]). Let F be a field

of characteristic p > 0. The following is an isomorphism:
Yt KJ(E)/p— v(e)p.

Example 2.6. When F is a finite field, this is clear by Examples and
More generally, for perfect fields F' = FP clearly KM (F) = 0 and v(n)r = 0 for
any n > 1.

Example 2.7. Let F' = F,(¢). Then Examplegives a description of v(1)r, and
Theorem claims an isomorphism, on the 1-st graded piece,

Yp: FX/(FX)Y — {f(t) € F: f(t)PtP~1 — f(t) = ¢/(t) for some g € F}.

U/

u+— —.
u

Injectivity is clear, since u'/u = 0 implies v’ = 0, so u € FP =T, (t?).
When n = 1, Theorem [2.5] is:

Theorem 2.8 (Jacobson and Cartier, [GS17, Thm 9.2.2]). For every field F of
characteristic p > 0, the sequence

x P px dlog =1 pol /ppl
1= F* > F* — Qr — PQr/PBgp
s exact.

In fact, Jacobson and Cartier’s theorem is a key ingredient in the proof of The-
orem [2.5] We present a proof in Section []
As a first step to prove Theorem [2.5] we have the following functoriality property:
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Lemma 2.9 ([GS17, Lem 9.5.4]). Given a finite separable extension F'/F, the
diagram

KM(F")/p 2 v(e)m

NF’/FJ/ ltr

KM (F)/p =2 v(e)r

commutes. Here, the homomorphism tr: Q% — Q'L is given by the composition

On, > F op O 225 FopQn = Qp.

Remark 2. The lemma allows us to reduce Theorem to finitely-generated
extensions F'/IF,, since any field F' can be written as a colimit of finitely-generated
extensions.

3. A DIGRESSION—THE MOTIVIC STORY

Since Theoremdescribes KM(F)/p when F has characteristic p, we also men-
tion the story of Milnor K-theory away from the characteristic of p, i.e., KM (F)/¢
where { #0 € F.

3.1. The norm residue theorem. Let F' be a field and ¢ > 0 be an integer such
that ¢ € F*. The short exact sequence

lospu—F 5F 51
where F is the separable closure of F' gives rise to the isomorphism F* /¢ —

H},(F, j1¢). By cup products, we have a homomorphism 9: (F*)®4/¢ — HE (F, 2.

Moreover, since d(z ® (1 — z)) = 0 for any = # 0,1, we obtain a homomorphism

KM(F)/t — HL (F, pg?).

Theorem 3.1 (Norm residue theorem, Voevodsky). For any field F and an integer
{ € F invertible, 9: KM (F)/t — HY,(F, 1) defined above is an isomorphism.

In fact, given a smooth scheme X/F, there is an object Z(5)§ € D(X¢) which
interpolates between these two objects, i.e., with the properties:

o Z(j)%/0" = " when 1/¢ € Ox; and

o Z(j)%/p" = W, [—j] when p =0 € Ox.

4. THE PROOF OF JACOBSON AND CARTIER’'S THEOREM

We will follow the proof in [GS17, §9.3], due to Katz.

Definition 2. A connection on a finite dimensional F-vector space V is a homo-
morphism V: V — QL ®p V such that

V(av) = aV(v) + da®@v
foralla e Fandv e V.

Example 4.1. The main tool here will be to study, for a differential form w € QL.,
the map V,,: F — Q}. defined by

Vu(a) :=da+ aw.
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Indeed, for any a,b € F,
Vo (ab) = d(ab) + abw
= a(db+ bw) +da - b
=aV,(b) +da-b.
Notably, a 1-form w € QL is logarithmic (i.e., in the image of dlog: F* — QL) if
and only if V,(a) = da + aw = 0 for some a € F*.

A connection V gives rise to a F-linear map V,: Derpr(F) — Endps (V) sending
a derivation V to the composition

VS oherV 22 Popv v

where the F-derivation D: F — F is identified with a homomorphism Q}. — F via
the universal property.
Remark 3. Although V., is F-linear, the element V, D is only FP-linear in general.
Forae Fandv eV,
V.D(av) = D ®id(aV(v) 4+ da ® v)
=aD ®id(V(v)) + D(a)v
= aV.D(v) + D(a)v.
Recall that D(da) = D(a) since we abuse notation by calling both the differential
K — K and the homomorphism Q} — K as D. Here if a = b? for some b € F
then D(a) = pb?~1D(b) = 0, showing linearity.
Example 4.2. For the connection V,,,
VusD(a) = D(da + aw) = D(a) + aD(w).
Recall that the F-vector space Endp» (V) has two natural operations:
e the Lie bracket [¢,¢] := ¢ o) — 1 o p; and
e the p-th iterate ¢°P.
The subspace Der(F) is stable under both of these operations. Indeed, for any
derivation D € Der(F),
P
D(ab) =Y (?) D°aD°®=Dp = D°Pab + aD°Pb.
i=o \'
Thus, it is a natural condition for a connection to require that the map V, respect
these operations on Der(F') and End(V):

Definition 3. The connection V is flat if
V.«[D1, D3] = [ViD1,V.Ds)

for all Dy, Dy € Der(K) and V is a p-connection if V,.(D°?) = (V.D)°P for all
D € Der(K).

Remark 4. This definition is completely analogous to flat connections in dif-
ferential geometry. A connection of a vector bundle £ — M is a R-linear map
V:I(E) - T'(T*M ® E) satisfying the product rule, and it is flat if the curvature

Fo(X,Y)(s) = VxVy = VyVxs - Vixy}s

disappears everywhere.
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We have:
Theorem 4.3 ([GSI7, Thm 9.3.3]). The following are equivalent for a differential
form w € Q.
(1) w is logarithmic

(2) w € l/(].)F
(8) The connection V,, is a flat p-connection.

Proof. That implies is clear.
We will check implies . Denoting L, for multiplication by a, we have
[VwsD1,VuDs] = [D1Ds) + [D1Lp,o] — [D2Lb,w) — [LpywlDow]
= [D1Ds] + Lp,pyw — LpyD1w
= Vus[D1D2] = Lip, pyjw + LD, Dyw — LDyDyws

where the second equality is since D € Der(F) if and only if [D, L,] = Lp, for all
a € F. Here, I claim that for all derivations Dq, Dy € Der(F) and all w € Q%

(41) (Dl A DQ)(dw) = DlDQW - Dngw - [Dng]w.

Given this claim, Lip, p,jw + LD, Dsw — LDyDyw = —L(DyADy)(dw) = 0 since dw = 0,
so we are done.
Now, to check (4.1)) it suffice to look at w = adb with a,b € F, in which case

(Dl AN Dg)(d&)) = Dl(a)Dg(b) — Dg(a)Dl(b)
= DlDQ(adb) — D2D1 (adb) — [Dng](adb)
= D1D2w — Dngw — [Dng]w.

Proving V,, is a p-connection is similar.
Finally, we check implies . It suffices to prove this for F/FP a finite
extension. We use the following lemma:

Lemma 4.4 ([GS17, Thm 9.3.6]). Let F/E be a finite extension with F? C E,
and let V be a K-vector space equipped with a flat p-connection V. Then setting
VV = {v eV :V(v) =0}, the natural map

FepVY =V
is an isomorphism.
Applying this theorem to V = I we obtain a nonzero vector v € F' such that
V. (v) =0, so that w = —dlog(v). O
5. SURJECTIVITY OF THE DIFFERENTIAL SYMBOL

The goal of this section is to prove:
Proposition 5.1 (Surjectivity of ¢ [GS17, Thm 9.6.1]). Let F' be finitely-generated

over F,. The group v(n)p is additively generated by the elements of the form
afldal ARERWY a;ldan.

We first prove the following lemma:
Lemma 5.2 ([GS17, Prop 9.6.3]). Let F/FP? be a purely inseparable extension of
degree p. Then for any F-linear map g: F — FP, there exists a finite extension

E/F? of degree prime to p such that the induced map g': EF — E satisfies: there
ezists ¢ € EF* such that g(¢') =0 for 1 <i<p-—1.
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Proof. The FP-subspaces ker(g) C F and dF C Q3. /o Doth have codimension 1

(by Proposition , so there is a F-isomorphism ¢: F — Q},/Fp taking ker(g)

to dF. Let w = a(db/b) € Qf p, \ dF, with a,b € F*. Now Qp p,/dF is a

one-dimensional FP-vector space, so there exists a p € (FP)* such that
db db

a”? € pa- + dF.

Let FE = Fp(u) Wlth Up_l = p. NOW? in Q}T'E/E’

db db
(u_la)p? € u_la? + d(FE),
i.e., u lw € v(1)p. Thus by Theorem there is a y € F* with v lw = dy/y.
Now, the following are equivalent:

e g(zx) =0;

e za € ker(g);

o xdy/y € dF for allz € F

Moreover, the elements 3’dy for 0 < i < p — 2 span dF. Thus ¢ = y works. [l

Now, consider F» C E C F and suppose F/E has degree p", with a p-basis
{b1,...,b.}, so dlogb; forms a K-basis for Q},/E. Let m denote the set of strictly
increasing functions from {1,...,n} to {1,...,r}, and for each s € []] set

ws = dlogbs1y A -+ Adlog by,

which forms a F-basis for Q}F/E. Now we may define a filtration on Q’}/E by setting

n r
F/E<s = Flws:s€ {n]}

n . n—1
F/E,<s *— dQF/E,<s'

T

Considering the lexicographic ordering on [n

Q%/E,s/ '
Now, we have a “filtered version” of Proposition [5.1

], we have s < s’ then QT}/E’Q C

Proposition 5.3 ([GS17, Prop 9.6.5]). Let F/E be a finite extension of degree p",

as above. Fix s € [2] and assume a € F satisfies

(v = D(aws) = (a” = a)ws € Vpyp o + By -

(recall that B};/E is only a E-vector space.) Then, for some finite extension F'/F
of degree coprime to p,

aws € Vv p s + Im(dlog).
Proof. The proof is quite technical. [
Given Proposition [5.3] we can prove Proposition [5.1}
Proof of Proposition[5.1. F/FP? is a finite extension. Assume d log is not surjective.

Then since
n __ n
F — E QF,gsv

SE[:J
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we may pick a minimal s = s(F') such that there exists a w € v(n)p not in the image
of dlog such that w = w'+n withw’ € Q% -, andn € Bi. Now Qp o = Q% _ +Fuws
so w’' = aw, +w" for some a € F and " € QF .

Now aws = w —n —w”, so
(v = D(aws) = (v = Dw — (v = )n — (v = Yw" € Qp ., + B,
since (y — 1)n, (y — Dw € B and (y — " € QF __.
By Proposition there is a finite extension F'/F of degree coprime to p such
that aws € Q' + Im(dlog).
The argument shows that s(F’) < s(F'). Thus, eventually s(F') will not exist, and

there exists some extension F'/F of degree coprime to p for which 4%, : KM (F')/p —
v(n)p: is surjective. Now, in the diagram:

KM (F)/p =2 v(n)p

l |

EM(F')Jp 22 v(n) g

NF//FJ/ ltr

KM(F)/p =2 v(n)p

The vertical composition v(n)p — v(n)p —s v(n)p is [F' : F], which is an isomor-
phism since v(n) is p-torsion. Thus, tr is surjective, and since ¥ is surjective, the
homomorphism ¢ r must be surjective as well. (Il

6. INJECTIVITY OF THE DIFFERENTIAL SYMBOL
We hope to prove:

Theorem 6.1 (Injectivity of % [GS17, Thm 9.7.1]). For all finitely generated
extensions F/F,, the differential symbol ¢¥%: KM(F)/p — v(n)r is injective.

The first step is to use Proposition[L.3|to allow for induction on the transcendence
degree:

Lemma 6.2 ([GSI7, Prop 9.7.2]). Assume that ¢} and 1/)?5_1 are injective, for any
finite extension E/F. Then so is dj?‘(t)'

Proof. There is a commutative diagram:

0 —— K (F)/p —— KY(F(1)/p —— @peary, Kali(6(P)/p —— 0

Jd)? J/w;'(t) J{@ ip

Qof n n n n
oy Wiy —— Drewaryo rwy/ Ve,

0

Here, ip is the composite of Z(_Pl) with the map jp: QZ(_Pl) — Q’}(t)/ﬂrg[ﬂp given
by
jp(l‘odl’l VARERIVAN dl'n_l) = %Odgl VARERIVAN dfn—l AN W;ldﬂp
where P = (mp) C F[t] and the Z; are arbitrary lifts of z; € k(P) to F[t]p.
Thus, it suffices to check the injectivity of ¢ p, which reduces to the injectivity of
Jp.
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The module Q}V[t]P is a free F[t] p-module on a basis consisting of dmp and some
other elements da;. Thus, Q%[t]p has a basis consisting of n-fold exterior products
of these forms. Hence the relation c~u/\7r;1d7rp = 0 can hold only for a lift 0 € Q’}[t]P
of we QZ( P) if w is a linear combination of basis elements involving drp. But then

the image of w in QZ’(_Pl) is 0, as desired. O

To prove Theorem 6.1, we proceed by induction on n, the case n = 0 being
obvious. Let d be the transcendence degree of F/F,. Then there exists a scheme-
theoretic point of codimension 1 (i.e., a divisor) on the affine space A]‘é:l whose
local ring R has residue field isomorphic to F'. Let us define:

Definition 4. Let F be a fractional field of R, and M its maximal ideal. Let
KM(R)/p be the kernel of the residue map dyr: K, (F)/p — KM | (F)/p. The
analogous construction on the differential side is

v(n) g = ker(Q 2= QL /BR).

Now the differential symbol ¢ restricts to a homomorphism % : KM (R)/p —
v(n)g.

Denote by KM (R, M)/p the kernel of the specialization map s : KM (R) —
KM (F), which is independent of the choice of the prime element, and by v(n)r
the kernel of the reduction map pr: v(n)gr — v(n)r. Then ¢} restricts further to
a map % 10 KM (R, M)/p— v(n)r -

Lemma 6.3. With notations as above, assume that the differential symbol
Vi Kn(R,M)/p = v(n)rm
1s surjective. Then the symbol Y is injective.

Proof. We have the commutative diagram with exact rows

0 —— K)(R,M)/p — K} (R)/p — K} (F)/p —— 0

Jw;;,M Wz’ sz

0 —— vin) gy —— v(n)p —— v(n)F.

Thus to prove Theorem it suffices to prove the surjectivity of ¥} ,,.

Definition 5. If R is a semi-local Dedekind ring with field of fractions F and
maximal ideals My, ..., M,, denote its Jacobson radical by I := M;N---NM,. By
the Chinese remainder theorem R/I = R/M; x --- x R/M,, a direct product of
fields. Therefore, we may define

KR/ = KN (R/My) @ - @ K (R/M).

Let KM(R)/p ¢ KM(F)/p be the kernel of @y, : KM(F)/p — KM(R/T)/p.
The group KM (R, I)/p is the kernel of

@spt: KM (R)/p— @ KM (R/M;) /p = KM (R/I)/p.
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As in the case for local rings, 1% restricts to a homomorphism ¢%: KM(R)/p —
v(n)g, and the following diagram commutes:

KM(R)/p % KM(R/T)/p = @ KM (R/M))/p

lwg l@wgmi

Z/(TL)R — V(”)R/I = @V(H)R/Ml

Thus, it restricts to a homomorphism ¢} ;: Ky, (R, I)/p — v(n)r,1, where v(n)g,1
is the kernel of the bottom map v(n)r — v(n)g/1.

Thus, the statement to be proven is:

Proposition 6.4 ([GSI7, Prop 9.7.6]). Let k be a perfect field of characteristic
p >0 and R a semi-local Dedekind domain which is obtained as a localization of a
finitely-generated k-algebra. Then the differential symbol

Vi Ky (R) = v(n)gr
18 surjective.

The proof follows a similar strategy as the proof of Proposition [5.1} using the
integral version of Theorem to prove the injectivity of ¢}

Corollary 6.5 ([GS17, Lemma 9.7.9]). Let R D T D RP be an extension of semi-
local Dedekind rings which arise as localizations of finitely generated algebras over
a perfect field k of characteristic p > 0. Assume that the arising extension F/Fy of
fraction field is finite. Then the sequence

1 R</T% 2% Qb L Qb /Bl iy

15 exact.
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